二元合金体系团簇展开的模因图选择

Zexuan Zhu, Z. Ji, Xiaofeng Fan, J. Kuo
{"title":"二元合金体系团簇展开的模因图选择","authors":"Zexuan Zhu, Z. Ji, Xiaofeng Fan, J. Kuo","doi":"10.1109/MC.2011.5953635","DOIUrl":null,"url":null,"abstract":"Cluster expansion provides a powerful tool in materials modeling. It has enabled an efficient prediction of the atomic properties of materials with the combination of the modern quantum calculation theory. To construct an accurate cluster expansion model, a few important cluster figures should be identified. This paper proposes a novel figure selection method based on memetic algorithm (MA), which is a synergy of genetic algorithm (GA) and orthogonal matching pursuit (OMP) based memetic operation. The memetic operation is designed to fine-tunes the solutions of GA and accelerate the convergence of the search. The performance of the proposed method is evaluated on two binary alloy datasets. Comparative study to other state-of-the-art figure selection methods demonstrates that the proposed method is capable of obtaining better or competitive prediction accuracy and searching the figure space efficiently.","PeriodicalId":441186,"journal":{"name":"2011 IEEE Workshop on Memetic Computing (MC)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memetic figure selection for cluster expansion in binary alloy systems\",\"authors\":\"Zexuan Zhu, Z. Ji, Xiaofeng Fan, J. Kuo\",\"doi\":\"10.1109/MC.2011.5953635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster expansion provides a powerful tool in materials modeling. It has enabled an efficient prediction of the atomic properties of materials with the combination of the modern quantum calculation theory. To construct an accurate cluster expansion model, a few important cluster figures should be identified. This paper proposes a novel figure selection method based on memetic algorithm (MA), which is a synergy of genetic algorithm (GA) and orthogonal matching pursuit (OMP) based memetic operation. The memetic operation is designed to fine-tunes the solutions of GA and accelerate the convergence of the search. The performance of the proposed method is evaluated on two binary alloy datasets. Comparative study to other state-of-the-art figure selection methods demonstrates that the proposed method is capable of obtaining better or competitive prediction accuracy and searching the figure space efficiently.\",\"PeriodicalId\":441186,\"journal\":{\"name\":\"2011 IEEE Workshop on Memetic Computing (MC)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Memetic Computing (MC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MC.2011.5953635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Memetic Computing (MC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MC.2011.5953635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

集群扩展为材料建模提供了一个强大的工具。它与现代量子计算理论相结合,实现了对材料原子性质的有效预测。为了构建准确的集群扩展模型,需要识别几个重要的集群图形。本文提出了一种基于模因算法(MA)的图形选择新方法,该方法是遗传算法(GA)和基于正交匹配追踪(OMP)的模因操作的协同作用。模因运算可以对遗传算法的解进行微调,加快搜索的收敛速度。在两个二元合金数据集上对该方法的性能进行了评价。通过与其他图形选择方法的比较研究表明,该方法能够获得更好或更具竞争力的预测精度,并能有效地搜索图形空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memetic figure selection for cluster expansion in binary alloy systems
Cluster expansion provides a powerful tool in materials modeling. It has enabled an efficient prediction of the atomic properties of materials with the combination of the modern quantum calculation theory. To construct an accurate cluster expansion model, a few important cluster figures should be identified. This paper proposes a novel figure selection method based on memetic algorithm (MA), which is a synergy of genetic algorithm (GA) and orthogonal matching pursuit (OMP) based memetic operation. The memetic operation is designed to fine-tunes the solutions of GA and accelerate the convergence of the search. The performance of the proposed method is evaluated on two binary alloy datasets. Comparative study to other state-of-the-art figure selection methods demonstrates that the proposed method is capable of obtaining better or competitive prediction accuracy and searching the figure space efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信