主动迁移学习中的不确定性准则用于高效视频特定人体姿态估计

Hiromu Taketsugu, N. Ukita
{"title":"主动迁移学习中的不确定性准则用于高效视频特定人体姿态估计","authors":"Hiromu Taketsugu, N. Ukita","doi":"10.23919/MVA57639.2023.10215565","DOIUrl":null,"url":null,"abstract":"This paper presents a combination of Active Learning (AL) and Transfer Learning (TL) for efficiently adapting Human Pose (HP) estimators to individual videos. The proposed approach quantifies estimation uncertainty through the temporal changes and unnaturalness of estimated HPs. These uncertainty criteria are combined with clustering-based representativeness criterion to avoid the useless selection of similar samples. Experiments demonstrated that the proposed method achieves high learning efficiency and outperforms comparative methods.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Criteria in Active Transfer Learning for Efficient Video-Specific Human Pose Estimation\",\"authors\":\"Hiromu Taketsugu, N. Ukita\",\"doi\":\"10.23919/MVA57639.2023.10215565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a combination of Active Learning (AL) and Transfer Learning (TL) for efficiently adapting Human Pose (HP) estimators to individual videos. The proposed approach quantifies estimation uncertainty through the temporal changes and unnaturalness of estimated HPs. These uncertainty criteria are combined with clustering-based representativeness criterion to avoid the useless selection of similar samples. Experiments demonstrated that the proposed method achieves high learning efficiency and outperforms comparative methods.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种结合主动学习(AL)和迁移学习(TL)的方法,用于有效地使人体姿态(HP)估计器适应单个视频。该方法通过估计hp的时间变化和非自然性来量化估计的不确定性。这些不确定度准则与基于聚类的代表性准则相结合,避免了相似样本的无用选择。实验结果表明,该方法具有较高的学习效率,优于其他比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty Criteria in Active Transfer Learning for Efficient Video-Specific Human Pose Estimation
This paper presents a combination of Active Learning (AL) and Transfer Learning (TL) for efficiently adapting Human Pose (HP) estimators to individual videos. The proposed approach quantifies estimation uncertainty through the temporal changes and unnaturalness of estimated HPs. These uncertainty criteria are combined with clustering-based representativeness criterion to avoid the useless selection of similar samples. Experiments demonstrated that the proposed method achieves high learning efficiency and outperforms comparative methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信