{"title":"通过在可控力场中运动的代理形成所需的集体质心","authors":"Anoop Jain, Debasish Ghose, P. Menon","doi":"10.1109/INDIANCC.2016.7441126","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of a formation of agents trying to achieve a desired stationary or moving collective centroid. The agents are assumed to be moving in a force field which is controlled externally. The stabilization of the collective centroid to a fixed desired location results in a balanced formation of the agents about that point. Similarly, the centroid of the system of agents may be required to move along a certain given trajectory. For this, the centroid of the formation must converge to the desired trajectory. To solve this problem, we propose an all-to-all coupled planar motion model that explicitly incorporates an additional control pertaining to the external force field. Simulation results are presented to support the theoretical findings.","PeriodicalId":286356,"journal":{"name":"2016 Indian Control Conference (ICC)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Achieving a desired collective centroid by a formation of agents moving in a controllable force field\",\"authors\":\"Anoop Jain, Debasish Ghose, P. Menon\",\"doi\":\"10.1109/INDIANCC.2016.7441126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the problem of a formation of agents trying to achieve a desired stationary or moving collective centroid. The agents are assumed to be moving in a force field which is controlled externally. The stabilization of the collective centroid to a fixed desired location results in a balanced formation of the agents about that point. Similarly, the centroid of the system of agents may be required to move along a certain given trajectory. For this, the centroid of the formation must converge to the desired trajectory. To solve this problem, we propose an all-to-all coupled planar motion model that explicitly incorporates an additional control pertaining to the external force field. Simulation results are presented to support the theoretical findings.\",\"PeriodicalId\":286356,\"journal\":{\"name\":\"2016 Indian Control Conference (ICC)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIANCC.2016.7441126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIANCC.2016.7441126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achieving a desired collective centroid by a formation of agents moving in a controllable force field
In this paper, we study the problem of a formation of agents trying to achieve a desired stationary or moving collective centroid. The agents are assumed to be moving in a force field which is controlled externally. The stabilization of the collective centroid to a fixed desired location results in a balanced formation of the agents about that point. Similarly, the centroid of the system of agents may be required to move along a certain given trajectory. For this, the centroid of the formation must converge to the desired trajectory. To solve this problem, we propose an all-to-all coupled planar motion model that explicitly incorporates an additional control pertaining to the external force field. Simulation results are presented to support the theoretical findings.