X. Shimeng, L. Cen, Yao Yijing, Yu Yuqing, Liu Weiya, Li Qiang
{"title":"高速磁悬浮转向架结构强度有限元建模及静强度分析","authors":"X. Shimeng, L. Cen, Yao Yijing, Yu Yuqing, Liu Weiya, Li Qiang","doi":"10.11648/J.IJTET.20190504.15","DOIUrl":null,"url":null,"abstract":"Maglev train with no mechanical contact of the innovative technology, as well as a series of excellent economic and environmental advantages came into being. More and more people pay attention to it, and it has become one of the most promising transportation means in the new century. According to the actual operation of maglev train, a boundary constraint method is proposed in this paper. On the basis of the actual operation of maglev train, a method of boundary constraint is proposed, and the finite element model is established by using HyperMesh software. Afterwards using ANSYS analysis software to analyzed the statics performance of levitation chassis under the four working conditions of maglev vehicle, and static strength of the levitation chassis based on von Mises stress was assessed. In accordance with the results, the parts with high stress are optimized. The result showed that the stress intensity on the back of the air spring mounting base is relatively high. This situation can be improved by changing the radius to 40 mm fillets. The strength of other parts meets the standard requirement and provided the basis for further optimization calculation. The results have laid a foundation for the fatigue strength test of the suspension chassis of high-speed maglev train.","PeriodicalId":265375,"journal":{"name":"International Journal of Transportation Engineering and Technology","volume":"179 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite Element Modeling and Static Strength Analysis on Structure Strength of the High-Speed Maglev Bogie\",\"authors\":\"X. Shimeng, L. Cen, Yao Yijing, Yu Yuqing, Liu Weiya, Li Qiang\",\"doi\":\"10.11648/J.IJTET.20190504.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maglev train with no mechanical contact of the innovative technology, as well as a series of excellent economic and environmental advantages came into being. More and more people pay attention to it, and it has become one of the most promising transportation means in the new century. According to the actual operation of maglev train, a boundary constraint method is proposed in this paper. On the basis of the actual operation of maglev train, a method of boundary constraint is proposed, and the finite element model is established by using HyperMesh software. Afterwards using ANSYS analysis software to analyzed the statics performance of levitation chassis under the four working conditions of maglev vehicle, and static strength of the levitation chassis based on von Mises stress was assessed. In accordance with the results, the parts with high stress are optimized. The result showed that the stress intensity on the back of the air spring mounting base is relatively high. This situation can be improved by changing the radius to 40 mm fillets. The strength of other parts meets the standard requirement and provided the basis for further optimization calculation. The results have laid a foundation for the fatigue strength test of the suspension chassis of high-speed maglev train.\",\"PeriodicalId\":265375,\"journal\":{\"name\":\"International Journal of Transportation Engineering and Technology\",\"volume\":\"179 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Transportation Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJTET.20190504.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJTET.20190504.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite Element Modeling and Static Strength Analysis on Structure Strength of the High-Speed Maglev Bogie
Maglev train with no mechanical contact of the innovative technology, as well as a series of excellent economic and environmental advantages came into being. More and more people pay attention to it, and it has become one of the most promising transportation means in the new century. According to the actual operation of maglev train, a boundary constraint method is proposed in this paper. On the basis of the actual operation of maglev train, a method of boundary constraint is proposed, and the finite element model is established by using HyperMesh software. Afterwards using ANSYS analysis software to analyzed the statics performance of levitation chassis under the four working conditions of maglev vehicle, and static strength of the levitation chassis based on von Mises stress was assessed. In accordance with the results, the parts with high stress are optimized. The result showed that the stress intensity on the back of the air spring mounting base is relatively high. This situation can be improved by changing the radius to 40 mm fillets. The strength of other parts meets the standard requirement and provided the basis for further optimization calculation. The results have laid a foundation for the fatigue strength test of the suspension chassis of high-speed maglev train.