基于知识的无人机收发机电磁兼容干扰抑制方法

I. Demirkiran, D. Weiner, A. Drozd, I. Kasperovich
{"title":"基于知识的无人机收发机电磁兼容干扰抑制方法","authors":"I. Demirkiran, D. Weiner, A. Drozd, I. Kasperovich","doi":"10.1109/ISEMC.2010.5711312","DOIUrl":null,"url":null,"abstract":"This paper discusses the results of exploratory research and development to apply and demonstrate a heuristics, knowledge-based approach for analyzing the electromagnetic compatibility (EMC) of co-located radio frequency (RF) spread spectrum frequency hopping transceivers mounted on an unmanned airborne vehicle (UAV) platform. In particular, an expert system pre-processor is used to set up the initial problem and assure the availability of a valid geometry model which is used to compute geodesic losses in the frequency domain. A knowledge base is constructed to contain essential modeling rules and “scripts” describing the steps involved in a validated, bottoms-up/top-down EMC analysis methodology. Problem reasoning is first performed on the system geometry in the pre-processing stage. An expert system based post-processor is then used to “monitor” the signal environment in the time domain and select the interference rejection scheme(s) appropriate for mitigating the effects of interferers present at a victim receptor port. Various interference rejection schemes are considered based on the interferer type and signal environment characteristics. This is necessary since a single interference rejection scheme cannot realistically be expected to suppress all types of interference that may be present.","PeriodicalId":201448,"journal":{"name":"2010 IEEE International Symposium on Electromagnetic Compatibility","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Knowledge-based approach to interference mitigation for EMC of transceivers on unmanned aircraft\",\"authors\":\"I. Demirkiran, D. Weiner, A. Drozd, I. Kasperovich\",\"doi\":\"10.1109/ISEMC.2010.5711312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the results of exploratory research and development to apply and demonstrate a heuristics, knowledge-based approach for analyzing the electromagnetic compatibility (EMC) of co-located radio frequency (RF) spread spectrum frequency hopping transceivers mounted on an unmanned airborne vehicle (UAV) platform. In particular, an expert system pre-processor is used to set up the initial problem and assure the availability of a valid geometry model which is used to compute geodesic losses in the frequency domain. A knowledge base is constructed to contain essential modeling rules and “scripts” describing the steps involved in a validated, bottoms-up/top-down EMC analysis methodology. Problem reasoning is first performed on the system geometry in the pre-processing stage. An expert system based post-processor is then used to “monitor” the signal environment in the time domain and select the interference rejection scheme(s) appropriate for mitigating the effects of interferers present at a victim receptor port. Various interference rejection schemes are considered based on the interferer type and signal environment characteristics. This is necessary since a single interference rejection scheme cannot realistically be expected to suppress all types of interference that may be present.\",\"PeriodicalId\":201448,\"journal\":{\"name\":\"2010 IEEE International Symposium on Electromagnetic Compatibility\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Electromagnetic Compatibility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.2010.5711312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Electromagnetic Compatibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2010.5711312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文讨论了探索性研究和开发的结果,应用并演示了一种启发式的、基于知识的方法来分析安装在无人机平台上的共定位射频扩频跳频收发器的电磁兼容性(EMC)。特别地,使用专家系统预处理器来建立初始问题,并确保有效的几何模型的可用性,该模型用于计算频域测地线损耗。构建知识库以包含基本的建模规则和“脚本”,这些规则和“脚本”描述了经过验证的、自底向上/自顶向下的EMC分析方法所涉及的步骤。在预处理阶段,首先对系统几何图形进行问题推理。然后使用基于专家系统的后处理器来“监测”时域中的信号环境,并选择适当的干扰抑制方案,以减轻存在于受害者受体端口的干扰的影响。根据干扰类型和信号环境特点,提出了多种抗干扰方案。这是必要的,因为单一的干扰抑制方案实际上不能期望抑制可能存在的所有类型的干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge-based approach to interference mitigation for EMC of transceivers on unmanned aircraft
This paper discusses the results of exploratory research and development to apply and demonstrate a heuristics, knowledge-based approach for analyzing the electromagnetic compatibility (EMC) of co-located radio frequency (RF) spread spectrum frequency hopping transceivers mounted on an unmanned airborne vehicle (UAV) platform. In particular, an expert system pre-processor is used to set up the initial problem and assure the availability of a valid geometry model which is used to compute geodesic losses in the frequency domain. A knowledge base is constructed to contain essential modeling rules and “scripts” describing the steps involved in a validated, bottoms-up/top-down EMC analysis methodology. Problem reasoning is first performed on the system geometry in the pre-processing stage. An expert system based post-processor is then used to “monitor” the signal environment in the time domain and select the interference rejection scheme(s) appropriate for mitigating the effects of interferers present at a victim receptor port. Various interference rejection schemes are considered based on the interferer type and signal environment characteristics. This is necessary since a single interference rejection scheme cannot realistically be expected to suppress all types of interference that may be present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信