来自行车记录仪视频和远程信息处理的碰撞和接近碰撞事件分类

L. Taccari, Francesco Sambo, L. Bravi, Samuele Salti, L. Sarti, Matteo Simoncini, A. Lori
{"title":"来自行车记录仪视频和远程信息处理的碰撞和接近碰撞事件分类","authors":"L. Taccari, Francesco Sambo, L. Bravi, Samuele Salti, L. Sarti, Matteo Simoncini, A. Lori","doi":"10.1109/ITSC.2018.8569952","DOIUrl":null,"url":null,"abstract":"The identification of dangerous events from sensor data is a fundamental sub-task in domains such as autonomous vehicles and intelligent transportation systems. In this work, we tackle the problem of classifying crash and near-crash events from dashcam videos and telematics data. We propose a method that uses a combination of state-of-the-art approaches in computer vision and machine learning. We use an object detector based on convolutional neural networks to extract semantic information about the road scene, and generate video and telematics features that are fed to a random forest classifier. Computational experiments on the SHRP2 dataset show that our approach reaches more than 0.87 of accuracy on the binary problem of distinguishing dangerous from safe events, and 0.85 on the 3-class problem of discriminating between crash, near-crash, and safe events.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Classification of Crash and Near-Crash Events from Dashcam Videos and Telematics\",\"authors\":\"L. Taccari, Francesco Sambo, L. Bravi, Samuele Salti, L. Sarti, Matteo Simoncini, A. Lori\",\"doi\":\"10.1109/ITSC.2018.8569952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of dangerous events from sensor data is a fundamental sub-task in domains such as autonomous vehicles and intelligent transportation systems. In this work, we tackle the problem of classifying crash and near-crash events from dashcam videos and telematics data. We propose a method that uses a combination of state-of-the-art approaches in computer vision and machine learning. We use an object detector based on convolutional neural networks to extract semantic information about the road scene, and generate video and telematics features that are fed to a random forest classifier. Computational experiments on the SHRP2 dataset show that our approach reaches more than 0.87 of accuracy on the binary problem of distinguishing dangerous from safe events, and 0.85 on the 3-class problem of discriminating between crash, near-crash, and safe events.\",\"PeriodicalId\":395239,\"journal\":{\"name\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2018.8569952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

从传感器数据中识别危险事件是自动驾驶汽车和智能交通系统等领域的一项基本子任务。在这项工作中,我们解决了从行车记录仪视频和远程信息处理数据中分类碰撞和接近碰撞事件的问题。我们提出了一种结合计算机视觉和机器学习中最先进方法的方法。我们使用基于卷积神经网络的对象检测器来提取有关道路场景的语义信息,并生成视频和远程信息处理特征,这些特征被馈送到随机森林分类器。在SHRP2数据集上的计算实验表明,我们的方法在区分危险事件和安全事件的二元问题上的准确率超过0.87,在区分碰撞、接近碰撞和安全事件的三类问题上的准确率超过0.85。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Crash and Near-Crash Events from Dashcam Videos and Telematics
The identification of dangerous events from sensor data is a fundamental sub-task in domains such as autonomous vehicles and intelligent transportation systems. In this work, we tackle the problem of classifying crash and near-crash events from dashcam videos and telematics data. We propose a method that uses a combination of state-of-the-art approaches in computer vision and machine learning. We use an object detector based on convolutional neural networks to extract semantic information about the road scene, and generate video and telematics features that are fed to a random forest classifier. Computational experiments on the SHRP2 dataset show that our approach reaches more than 0.87 of accuracy on the binary problem of distinguishing dangerous from safe events, and 0.85 on the 3-class problem of discriminating between crash, near-crash, and safe events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信