{"title":"基于特征的人脸识别方法","authors":"B. S. Manjunath, R. Chellappa, C. Malsburg","doi":"10.1109/CVPR.1992.223162","DOIUrl":null,"url":null,"abstract":"A feature-based approach to face recognition in which the features are derived from the intensity data without assuming any knowledge of the face structure is presented. The feature extraction model is biologically motivated, and the locations of the features often correspond to salient facial features such as the eyes, nose, etc. Topological graphs are used to represent relations between features, and a simple deterministic graph-matching scheme that exploits the basic structure is used to recognize familiar faces from a database. Each of the stages in the system can be fully implemented in parallel to achieve real-time recognition. Experimental results for a 128*128 image with very little noise are evaluated.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"387","resultStr":"{\"title\":\"A feature based approach to face recognition\",\"authors\":\"B. S. Manjunath, R. Chellappa, C. Malsburg\",\"doi\":\"10.1109/CVPR.1992.223162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A feature-based approach to face recognition in which the features are derived from the intensity data without assuming any knowledge of the face structure is presented. The feature extraction model is biologically motivated, and the locations of the features often correspond to salient facial features such as the eyes, nose, etc. Topological graphs are used to represent relations between features, and a simple deterministic graph-matching scheme that exploits the basic structure is used to recognize familiar faces from a database. Each of the stages in the system can be fully implemented in parallel to achieve real-time recognition. Experimental results for a 128*128 image with very little noise are evaluated.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"387\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A feature-based approach to face recognition in which the features are derived from the intensity data without assuming any knowledge of the face structure is presented. The feature extraction model is biologically motivated, and the locations of the features often correspond to salient facial features such as the eyes, nose, etc. Topological graphs are used to represent relations between features, and a simple deterministic graph-matching scheme that exploits the basic structure is used to recognize familiar faces from a database. Each of the stages in the system can be fully implemented in parallel to achieve real-time recognition. Experimental results for a 128*128 image with very little noise are evaluated.<>