基于IWOA-GRU的短期电力负荷预测

Xiaoyuan Zhao, Yang Wang
{"title":"基于IWOA-GRU的短期电力负荷预测","authors":"Xiaoyuan Zhao, Yang Wang","doi":"10.1117/12.2680207","DOIUrl":null,"url":null,"abstract":"This paper proposes a short-term load prediction model based on the improved whale optimization algorithm (IW0A) optimized gated recurrent neural network(GRU) to address the issue of strong unpredictability of electric load and low forecast accuracy. First, the whale population is initialized by S chaotic mapping to enhance the population diversity and improve the quality of the initial solution; second, a nonlinear convergence factor is proposed to balance the global and local search ability of the algorithm and improve the convergence speed in order to avoid the defects that the standard whale optimization algorithm is easy to fall into local optimum and slow convergence speed when solving the GRU parameter optimization problem. Finally, WOA is used to automatically determine the best parameters and create the IWOA-GRU load prediction model by optimizing the number of layer neurons, learning rate, and other factors. The results show that when compared to the prediction methods used by LSTM, GRU, PSO-GRU, RSO-GRU, and WOA-GRU, the proposed model may successfully increase convergence speed and prediction accuracy.","PeriodicalId":201466,"journal":{"name":"Symposium on Advances in Electrical, Electronics and Computer Engineering","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term power load forecasting based on IWOA-GRU\",\"authors\":\"Xiaoyuan Zhao, Yang Wang\",\"doi\":\"10.1117/12.2680207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a short-term load prediction model based on the improved whale optimization algorithm (IW0A) optimized gated recurrent neural network(GRU) to address the issue of strong unpredictability of electric load and low forecast accuracy. First, the whale population is initialized by S chaotic mapping to enhance the population diversity and improve the quality of the initial solution; second, a nonlinear convergence factor is proposed to balance the global and local search ability of the algorithm and improve the convergence speed in order to avoid the defects that the standard whale optimization algorithm is easy to fall into local optimum and slow convergence speed when solving the GRU parameter optimization problem. Finally, WOA is used to automatically determine the best parameters and create the IWOA-GRU load prediction model by optimizing the number of layer neurons, learning rate, and other factors. The results show that when compared to the prediction methods used by LSTM, GRU, PSO-GRU, RSO-GRU, and WOA-GRU, the proposed model may successfully increase convergence speed and prediction accuracy.\",\"PeriodicalId\":201466,\"journal\":{\"name\":\"Symposium on Advances in Electrical, Electronics and Computer Engineering\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Advances in Electrical, Electronics and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2680207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Advances in Electrical, Electronics and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2680207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对电力负荷不可预测性强、预测精度低的问题,提出了一种基于改进鲸鱼优化算法(IW0A)优化门控递归神经网络(GRU)的短期负荷预测模型。首先,采用S混沌映射对鲸鱼种群进行初始化,增强种群多样性,提高初始解的质量;其次,提出非线性收敛因子,平衡算法的全局和局部搜索能力,提高收敛速度,以避免标准鲸鱼优化算法在解决GRU参数优化问题时容易陷入局部最优、收敛速度慢的缺陷;最后,通过优化神经元层数、学习率等因素,利用WOA自动确定最佳参数,建立IWOA-GRU负荷预测模型。结果表明,与LSTM、GRU、PSO-GRU、RSO-GRU和WOA-GRU预测方法相比,该模型能够有效提高收敛速度和预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term power load forecasting based on IWOA-GRU
This paper proposes a short-term load prediction model based on the improved whale optimization algorithm (IW0A) optimized gated recurrent neural network(GRU) to address the issue of strong unpredictability of electric load and low forecast accuracy. First, the whale population is initialized by S chaotic mapping to enhance the population diversity and improve the quality of the initial solution; second, a nonlinear convergence factor is proposed to balance the global and local search ability of the algorithm and improve the convergence speed in order to avoid the defects that the standard whale optimization algorithm is easy to fall into local optimum and slow convergence speed when solving the GRU parameter optimization problem. Finally, WOA is used to automatically determine the best parameters and create the IWOA-GRU load prediction model by optimizing the number of layer neurons, learning rate, and other factors. The results show that when compared to the prediction methods used by LSTM, GRU, PSO-GRU, RSO-GRU, and WOA-GRU, the proposed model may successfully increase convergence speed and prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信