数据孪生

Akhil Vakayil, V. R. Joseph
{"title":"数据孪生","authors":"Akhil Vakayil, V. R. Joseph","doi":"10.1002/sam.11574","DOIUrl":null,"url":null,"abstract":"In this work, we develop a method named Twinning for partitioning a dataset into statistically similar twin sets. Twinning is based on SPlit, a recently proposed model‐independent method for optimally splitting a dataset into training and testing sets. Twinning is orders of magnitude faster than the SPlit algorithm, which makes it applicable to Big Data problems such as data compression. Twinning can also be used for generating multiple splits of a given dataset to aid divide‐and‐conquer procedures and k‐fold cross validation.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Data Twinning\",\"authors\":\"Akhil Vakayil, V. R. Joseph\",\"doi\":\"10.1002/sam.11574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we develop a method named Twinning for partitioning a dataset into statistically similar twin sets. Twinning is based on SPlit, a recently proposed model‐independent method for optimally splitting a dataset into training and testing sets. Twinning is orders of magnitude faster than the SPlit algorithm, which makes it applicable to Big Data problems such as data compression. Twinning can also be used for generating multiple splits of a given dataset to aid divide‐and‐conquer procedures and k‐fold cross validation.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在这项工作中,我们开发了一种名为Twinning的方法,用于将数据集划分为统计上相似的双胞胎集。Twinning基于SPlit, SPlit是最近提出的一种独立于模型的方法,用于将数据集最佳地分割为训练集和测试集。孪生算法比SPlit算法快几个数量级,适用于数据压缩等大数据问题。孪生也可用于生成给定数据集的多个分裂,以帮助分而治之的过程和k - fold交叉验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Twinning
In this work, we develop a method named Twinning for partitioning a dataset into statistically similar twin sets. Twinning is based on SPlit, a recently proposed model‐independent method for optimally splitting a dataset into training and testing sets. Twinning is orders of magnitude faster than the SPlit algorithm, which makes it applicable to Big Data problems such as data compression. Twinning can also be used for generating multiple splits of a given dataset to aid divide‐and‐conquer procedures and k‐fold cross validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信