Priyabrata Karmakar, S. Teng, Guojun Lu, Dengsheng Zhang
{"title":"旋转不变空间金字塔匹配图像分类","authors":"Priyabrata Karmakar, S. Teng, Guojun Lu, Dengsheng Zhang","doi":"10.1109/DICTA.2015.7371303","DOIUrl":null,"url":null,"abstract":"This paper proposes a new Spatial Pyramid representation approach for image classification. Unlike the conventional Spatial Pyramid, the proposed method is invariant to rotation changes in the images. This method works by partitioning an image into concentric rectangles and organizing them into a pyramid. Each pyramidal region is then represented using a histogram of visual words. Our experimental results show that our proposed method significantly outperforms the conventional method.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Rotation Invariant Spatial Pyramid Matching for Image Classification\",\"authors\":\"Priyabrata Karmakar, S. Teng, Guojun Lu, Dengsheng Zhang\",\"doi\":\"10.1109/DICTA.2015.7371303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new Spatial Pyramid representation approach for image classification. Unlike the conventional Spatial Pyramid, the proposed method is invariant to rotation changes in the images. This method works by partitioning an image into concentric rectangles and organizing them into a pyramid. Each pyramidal region is then represented using a histogram of visual words. Our experimental results show that our proposed method significantly outperforms the conventional method.\",\"PeriodicalId\":214897,\"journal\":{\"name\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2015.7371303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rotation Invariant Spatial Pyramid Matching for Image Classification
This paper proposes a new Spatial Pyramid representation approach for image classification. Unlike the conventional Spatial Pyramid, the proposed method is invariant to rotation changes in the images. This method works by partitioning an image into concentric rectangles and organizing them into a pyramid. Each pyramidal region is then represented using a histogram of visual words. Our experimental results show that our proposed method significantly outperforms the conventional method.