英特尔Touchstone Gamma原型机的性能结果

D. Bailey, E. Barszcz, R. Fatoohi, H. Simon, S. Weeratunga
{"title":"英特尔Touchstone Gamma原型机的性能结果","authors":"D. Bailey, E. Barszcz, R. Fatoohi, H. Simon, S. Weeratunga","doi":"10.1109/DMCC.1990.556381","DOIUrl":null,"url":null,"abstract":"This paper describes the Intel Touchstone Gamma Prototype, a distributed memory MIMD parallel computer based on the new Intel i860 floating point processor. With 128 nodes, this system has a theoretical peak performance of over seven GFLOPS. This paper presents some initial performance results on this system, including results for individual node computation, message passing and complete applications using multiple nodes. The highest rate achieved on a multiprocessor Fortran application program is 844 MFLOPS. Overview of the Touchstone Gamma System In spring of 1989 DARPA and Intel Scientific Computers announced the Touchstone project. This project calls for the development of a series of prototype machines by Intel Scientific Computers, based on hardware and software technologies being developed by Intel in collaboration with research teams at CalTech, MIT, UC Berkeley, Princeton, and the University of Illinois. The eventual goal of this project is the Sigma prototype, a 150 GFLOPS peak parallel supercomputer, with 2000 processing nodes. One of the milestones towards the Sigma prototype is the Gamma prototype. At the end of December 1989, the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center took delivery of one of the first two Touchstone Gamma systems, and it became available for testing in January 1990. The Touchstone Gamma system is based on the new 64 bit i860 microprocessor by Intel [4]. The i860 has over 1 million transistors and runs at 40 MHz (the initial Touchstone Gamma systems were delivered with 33 MHz processors, but these have since been upgraded to 40 MHz). The theoretical peak speed is 80 MFLOPS in 32 bit floating point and 60 MFLOPS for 64 bit floating point operations. The i860 features 32 integer address registers, with 32 bits each, and 16 floating point registers with 64 bits each (or 32 floating point registers with 32 bits each). It also features an 8 kilobyte onchip data cache and a 4 kilobyte instruction cache. There is a 128 bit data path between cache and registers. There is a 64 bit data path between main memory and registers. The i860 has a number of advanced features to facilitate high execution rates. First of all, a number of important operations, including floating point add, multiply and fetch from main memory, are pipelined operations. This means that they are segmented into three stages, and in most cases a new operation can be initiated every 25 nanosecond clock period. Another advanced feature is the fact that multiple instructions can be executed in a single clock period. For example, a memory fetch, a floating add and a floating multiply can all be initiated in a single clock period. A single node of the Touchstone Gamma system consists of the i860, 8 megabytes (MB) of dynamic random access memory, and hardware for communication to other nodes. The Touchstone Gamma system at NASA Ames consists of 128 computational nodes. The theoretical peak performance of this system is thus approximately 7.5 GFLOPS on 64 bit data. The 128 nodes are arranged in a seven dimensional hypercube using the direct connect routing module and the hypercube interconnect technology of the iPSC/2. The point to point aggregate bandwidth of the interconnect system, which is 2.8 MB/sec per channel, is the same as on the iPSC/2. However the latency for the message passing is reduced from about 350 microseconds to about 90 microseconds. This reduction is mainly obtained through the increased speed of the i860 on the Touchstone Gamma machine, when compared to","PeriodicalId":204431,"journal":{"name":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Performance Results on the Intel Touchstone Gamma Prototype\",\"authors\":\"D. Bailey, E. Barszcz, R. Fatoohi, H. Simon, S. Weeratunga\",\"doi\":\"10.1109/DMCC.1990.556381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the Intel Touchstone Gamma Prototype, a distributed memory MIMD parallel computer based on the new Intel i860 floating point processor. With 128 nodes, this system has a theoretical peak performance of over seven GFLOPS. This paper presents some initial performance results on this system, including results for individual node computation, message passing and complete applications using multiple nodes. The highest rate achieved on a multiprocessor Fortran application program is 844 MFLOPS. Overview of the Touchstone Gamma System In spring of 1989 DARPA and Intel Scientific Computers announced the Touchstone project. This project calls for the development of a series of prototype machines by Intel Scientific Computers, based on hardware and software technologies being developed by Intel in collaboration with research teams at CalTech, MIT, UC Berkeley, Princeton, and the University of Illinois. The eventual goal of this project is the Sigma prototype, a 150 GFLOPS peak parallel supercomputer, with 2000 processing nodes. One of the milestones towards the Sigma prototype is the Gamma prototype. At the end of December 1989, the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center took delivery of one of the first two Touchstone Gamma systems, and it became available for testing in January 1990. The Touchstone Gamma system is based on the new 64 bit i860 microprocessor by Intel [4]. The i860 has over 1 million transistors and runs at 40 MHz (the initial Touchstone Gamma systems were delivered with 33 MHz processors, but these have since been upgraded to 40 MHz). The theoretical peak speed is 80 MFLOPS in 32 bit floating point and 60 MFLOPS for 64 bit floating point operations. The i860 features 32 integer address registers, with 32 bits each, and 16 floating point registers with 64 bits each (or 32 floating point registers with 32 bits each). It also features an 8 kilobyte onchip data cache and a 4 kilobyte instruction cache. There is a 128 bit data path between cache and registers. There is a 64 bit data path between main memory and registers. The i860 has a number of advanced features to facilitate high execution rates. First of all, a number of important operations, including floating point add, multiply and fetch from main memory, are pipelined operations. This means that they are segmented into three stages, and in most cases a new operation can be initiated every 25 nanosecond clock period. Another advanced feature is the fact that multiple instructions can be executed in a single clock period. For example, a memory fetch, a floating add and a floating multiply can all be initiated in a single clock period. A single node of the Touchstone Gamma system consists of the i860, 8 megabytes (MB) of dynamic random access memory, and hardware for communication to other nodes. The Touchstone Gamma system at NASA Ames consists of 128 computational nodes. The theoretical peak performance of this system is thus approximately 7.5 GFLOPS on 64 bit data. The 128 nodes are arranged in a seven dimensional hypercube using the direct connect routing module and the hypercube interconnect technology of the iPSC/2. The point to point aggregate bandwidth of the interconnect system, which is 2.8 MB/sec per channel, is the same as on the iPSC/2. However the latency for the message passing is reduced from about 350 microseconds to about 90 microseconds. This reduction is mainly obtained through the increased speed of the i860 on the Touchstone Gamma machine, when compared to\",\"PeriodicalId\":204431,\"journal\":{\"name\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"volume\":\"240 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMCC.1990.556381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1990.556381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文介绍了一种基于新型Intel i860浮点处理器的分布式内存MIMD并行计算机——Intel Touchstone Gamma Prototype。该系统有128个节点,理论峰值性能超过7 GFLOPS。本文给出了该系统的一些初步性能结果,包括单个节点计算的结果、消息传递的结果和使用多个节点的完整应用程序的结果。在多处理器Fortran应用程序上实现的最高速率为844 MFLOPS。1989年春天,DARPA和英特尔科学计算机公司宣布了“试金石”项目。该项目要求英特尔科学计算机开发一系列原型机,基于英特尔与加州理工学院、麻省理工学院、加州大学伯克利分校、普林斯顿大学和伊利诺伊大学的研究团队合作开发的硬件和软件技术。这个项目的最终目标是Sigma原型,一个150 GFLOPS的峰值并行超级计算机,有2000个处理节点。Sigma原型的里程碑之一是Gamma原型。1989年12月底,NASA艾姆斯研究中心的数值空气动力学模拟(NAS)系统部接收了首批两个Touchstone Gamma系统中的一个,并于1990年1月开始进行测试。Touchstone Gamma系统是基于Intel的新型64位i860微处理器[4]。i860拥有超过100万个晶体管,运行频率为40兆赫(最初的Touchstone Gamma系统配备了33兆赫的处理器,但这些处理器已经升级到40兆赫)。32位浮点运算的理论峰值速度为80 MFLOPS, 64位浮点运算的峰值速度为60 MFLOPS。i860具有32个整数地址寄存器,每个32位,16个浮点寄存器,每个64位(或32个浮点寄存器,每个32位)。它还具有一个8kb的片上数据缓存和一个4kb的指令缓存。在缓存和寄存器之间有一条128位的数据路径。在主存和寄存器之间有一条64位的数据路径。i860有许多先进的功能,以促进高执行速度。首先,许多重要的操作,包括浮点数的加法、乘法和从主存中取出,都是流水线操作。这意味着它们被分成三个阶段,并且在大多数情况下,每25纳秒时钟周期可以启动一个新的操作。另一个高级特性是可以在一个时钟周期内执行多个指令。例如,内存提取、浮点加法和浮点乘法都可以在单个时钟周期内启动。Touchstone Gamma系统的单个节点由i860、8mb的动态随机存取存储器和用于与其他节点通信的硬件组成。位于NASA Ames的Touchstone Gamma系统由128个计算节点组成。因此,该系统在64位数据上的理论峰值性能约为7.5 GFLOPS。128个节点采用iPSC/2的直接连接路由模块和超立方体互连技术,排列在一个七维超立方体中。互连系统的点到点总带宽为每通道2.8 MB/秒,与iPSC/2相同。然而,消息传递的延迟从大约350微秒减少到大约90微秒。这种减少主要是通过在Touchstone Gamma机器上提高i860的速度来实现的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Results on the Intel Touchstone Gamma Prototype
This paper describes the Intel Touchstone Gamma Prototype, a distributed memory MIMD parallel computer based on the new Intel i860 floating point processor. With 128 nodes, this system has a theoretical peak performance of over seven GFLOPS. This paper presents some initial performance results on this system, including results for individual node computation, message passing and complete applications using multiple nodes. The highest rate achieved on a multiprocessor Fortran application program is 844 MFLOPS. Overview of the Touchstone Gamma System In spring of 1989 DARPA and Intel Scientific Computers announced the Touchstone project. This project calls for the development of a series of prototype machines by Intel Scientific Computers, based on hardware and software technologies being developed by Intel in collaboration with research teams at CalTech, MIT, UC Berkeley, Princeton, and the University of Illinois. The eventual goal of this project is the Sigma prototype, a 150 GFLOPS peak parallel supercomputer, with 2000 processing nodes. One of the milestones towards the Sigma prototype is the Gamma prototype. At the end of December 1989, the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center took delivery of one of the first two Touchstone Gamma systems, and it became available for testing in January 1990. The Touchstone Gamma system is based on the new 64 bit i860 microprocessor by Intel [4]. The i860 has over 1 million transistors and runs at 40 MHz (the initial Touchstone Gamma systems were delivered with 33 MHz processors, but these have since been upgraded to 40 MHz). The theoretical peak speed is 80 MFLOPS in 32 bit floating point and 60 MFLOPS for 64 bit floating point operations. The i860 features 32 integer address registers, with 32 bits each, and 16 floating point registers with 64 bits each (or 32 floating point registers with 32 bits each). It also features an 8 kilobyte onchip data cache and a 4 kilobyte instruction cache. There is a 128 bit data path between cache and registers. There is a 64 bit data path between main memory and registers. The i860 has a number of advanced features to facilitate high execution rates. First of all, a number of important operations, including floating point add, multiply and fetch from main memory, are pipelined operations. This means that they are segmented into three stages, and in most cases a new operation can be initiated every 25 nanosecond clock period. Another advanced feature is the fact that multiple instructions can be executed in a single clock period. For example, a memory fetch, a floating add and a floating multiply can all be initiated in a single clock period. A single node of the Touchstone Gamma system consists of the i860, 8 megabytes (MB) of dynamic random access memory, and hardware for communication to other nodes. The Touchstone Gamma system at NASA Ames consists of 128 computational nodes. The theoretical peak performance of this system is thus approximately 7.5 GFLOPS on 64 bit data. The 128 nodes are arranged in a seven dimensional hypercube using the direct connect routing module and the hypercube interconnect technology of the iPSC/2. The point to point aggregate bandwidth of the interconnect system, which is 2.8 MB/sec per channel, is the same as on the iPSC/2. However the latency for the message passing is reduced from about 350 microseconds to about 90 microseconds. This reduction is mainly obtained through the increased speed of the i860 on the Touchstone Gamma machine, when compared to
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信