对于大小为8的实例,无限邮政通信问题的不可判定性

Jing Dong, Qinghui Liu
{"title":"对于大小为8的实例,无限邮政通信问题的不可判定性","authors":"Jing Dong, Qinghui Liu","doi":"10.1051/ita/2012015","DOIUrl":null,"url":null,"abstract":"The infinite Post Correspondence Problem ( ω PCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [ Theory Comput. Syst. 36 (2003) 231–245] showed that ω PCP is undecidable for domain alphabets of size 105, Halava and Harju [ RAIRO–Theor. Inf. Appl. 40 (2006) 551–557] showed that ω PCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju’s construction. So we prove that ω PCP is undecidable for domain alphabets of size 8.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Undecidability of infinite post correspondence problem for instances of size 8\",\"authors\":\"Jing Dong, Qinghui Liu\",\"doi\":\"10.1051/ita/2012015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The infinite Post Correspondence Problem ( ω PCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [ Theory Comput. Syst. 36 (2003) 231–245] showed that ω PCP is undecidable for domain alphabets of size 105, Halava and Harju [ RAIRO–Theor. Inf. Appl. 40 (2006) 551–557] showed that ω PCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju’s construction. So we prove that ω PCP is undecidable for domain alphabets of size 8.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2012015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2012015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

Ruohonen(1985)一般证明了无限后对应问题(ω PCP)是不可判定的。布朗德尔和坎特里尼[理论计算]。Syst. 36(2003) 231-245]表明,对于大小为105的域字母,Halava和Harju [rairo - theory], ω PCP是不可确定的。Inf. Appl. 40(2006) 551-557]表明ω PCP对于大小为9的域字母是不可确定的。通过设计一种特殊的编码,我们从Halava和Harju的建筑中删除了一个字母。因此,我们证明了ω PCP对于大小为8的域字母是不可判定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Undecidability of infinite post correspondence problem for instances of size 8
The infinite Post Correspondence Problem ( ω PCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [ Theory Comput. Syst. 36 (2003) 231–245] showed that ω PCP is undecidable for domain alphabets of size 105, Halava and Harju [ RAIRO–Theor. Inf. Appl. 40 (2006) 551–557] showed that ω PCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju’s construction. So we prove that ω PCP is undecidable for domain alphabets of size 8.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信