可以看到的是你得到的:结构感知点云增强

Frederik Hasecke, Martin Alsfasser, A. Kummert
{"title":"可以看到的是你得到的:结构感知点云增强","authors":"Frederik Hasecke, Martin Alsfasser, A. Kummert","doi":"10.1109/IV51971.2022.9827116","DOIUrl":null,"url":null,"abstract":"To train a well performing neural network for semantic segmentation, it is crucial to have a large dataset with available ground truth for the network to generalize on unseen data. In this paper we present novel point cloud augmentation methods to artificially diversify a dataset. Our sensor-centric methods keep the data structure consistent with the lidar sensor capabilities. Due to these new methods, we are able to enrich low-value data with high-value instances, as well as create entirely new scenes. We validate our methods on multiple neural networks with the public SemanticKITTI [3] dataset and demonstrate that all networks improve compared to their respective baseline. In addition, we show that our methods enable the use of very small datasets, saving annotation time, training time and the associated costs.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation\",\"authors\":\"Frederik Hasecke, Martin Alsfasser, A. Kummert\",\"doi\":\"10.1109/IV51971.2022.9827116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To train a well performing neural network for semantic segmentation, it is crucial to have a large dataset with available ground truth for the network to generalize on unseen data. In this paper we present novel point cloud augmentation methods to artificially diversify a dataset. Our sensor-centric methods keep the data structure consistent with the lidar sensor capabilities. Due to these new methods, we are able to enrich low-value data with high-value instances, as well as create entirely new scenes. We validate our methods on multiple neural networks with the public SemanticKITTI [3] dataset and demonstrate that all networks improve compared to their respective baseline. In addition, we show that our methods enable the use of very small datasets, saving annotation time, training time and the associated costs.\",\"PeriodicalId\":184622,\"journal\":{\"name\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV51971.2022.9827116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV51971.2022.9827116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了训练一个性能良好的神经网络进行语义分割,至关重要的是要有一个具有可用基础事实的大型数据集,以便网络对未见过的数据进行泛化。在本文中,我们提出了一种新的点云增强方法来人为地分散数据集。我们以传感器为中心的方法使数据结构与激光雷达传感器功能保持一致。由于这些新方法,我们能够用高价值的实例来丰富低价值的数据,以及创建全新的场景。我们使用公共SemanticKITTI[3]数据集在多个神经网络上验证了我们的方法,并证明所有网络与各自的基线相比都有所改善。此外,我们表明,我们的方法能够使用非常小的数据集,节省注释时间,训练时间和相关成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
To train a well performing neural network for semantic segmentation, it is crucial to have a large dataset with available ground truth for the network to generalize on unseen data. In this paper we present novel point cloud augmentation methods to artificially diversify a dataset. Our sensor-centric methods keep the data structure consistent with the lidar sensor capabilities. Due to these new methods, we are able to enrich low-value data with high-value instances, as well as create entirely new scenes. We validate our methods on multiple neural networks with the public SemanticKITTI [3] dataset and demonstrate that all networks improve compared to their respective baseline. In addition, we show that our methods enable the use of very small datasets, saving annotation time, training time and the associated costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信