生物医学图像模式特征函数生成的进化方法

P. Guo, P. Bhattacharya
{"title":"生物医学图像模式特征函数生成的进化方法","authors":"P. Guo, P. Bhattacharya","doi":"10.1145/1569901.1570216","DOIUrl":null,"url":null,"abstract":"A mechanism involving evolutionary genetic programming (GP) and the expectation maximization algorithm (EM) is proposed to generate feature functions, based on the primitive features, for an image pattern recognition system on the diagnosis of the disease OPMD. Experiments show that the propose algorithm achieves an average performance of 90.20% recognition rate on diagnosis, while reducing the number of feature dimensions from 11 primitive features to the space of a single generated feature.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An evolutionary approach to feature function generation in application to biomedical image patterns\",\"authors\":\"P. Guo, P. Bhattacharya\",\"doi\":\"10.1145/1569901.1570216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mechanism involving evolutionary genetic programming (GP) and the expectation maximization algorithm (EM) is proposed to generate feature functions, based on the primitive features, for an image pattern recognition system on the diagnosis of the disease OPMD. Experiments show that the propose algorithm achieves an average performance of 90.20% recognition rate on diagnosis, while reducing the number of feature dimensions from 11 primitive features to the space of a single generated feature.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种结合进化遗传规划(GP)和期望最大化算法(EM)的机制,在原始特征的基础上生成OPMD图像模式识别系统的特征函数。实验表明,该算法在将11个原始特征的特征维数减少到单个生成特征的空间的同时,在诊断上实现了90.20%的平均识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evolutionary approach to feature function generation in application to biomedical image patterns
A mechanism involving evolutionary genetic programming (GP) and the expectation maximization algorithm (EM) is proposed to generate feature functions, based on the primitive features, for an image pattern recognition system on the diagnosis of the disease OPMD. Experiments show that the propose algorithm achieves an average performance of 90.20% recognition rate on diagnosis, while reducing the number of feature dimensions from 11 primitive features to the space of a single generated feature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信