大粒子系统离散偶极近似的能力

M. Yurkin
{"title":"大粒子系统离散偶极近似的能力","authors":"M. Yurkin","doi":"10.1109/URSI-EMTS.2016.7571405","DOIUrl":null,"url":null,"abstract":"The discrete dipole approximation (DDA) is a general method to simulate light scattering by arbitrary particles. This talk reviews the DDA with focus on its application to very large particle systems, typically consisting of large numbers of particles with sizes comparable to or larger than the wavelength. Overall, the DDA is a viable option for such problems - it is conceptually simple, can naturally handle arbitrary inhomogeneous particles, and benefits from the availability of open-source codes. However, the major limitation is the computational complexity rapidly increasing with the size of the system. A few ideas to alleviate this issue are discussed, including the fast multipole method and the multi-grid DDA. While the DDA is equally applicable to both connected and disconnected particle systems, when applied to the latter it provides some insights into the notion of multiple scattering.","PeriodicalId":400853,"journal":{"name":"2016 URSI International Symposium on Electromagnetic Theory (EMTS)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Capabilities of the discrete dipole approximation for large particle systems\",\"authors\":\"M. Yurkin\",\"doi\":\"10.1109/URSI-EMTS.2016.7571405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discrete dipole approximation (DDA) is a general method to simulate light scattering by arbitrary particles. This talk reviews the DDA with focus on its application to very large particle systems, typically consisting of large numbers of particles with sizes comparable to or larger than the wavelength. Overall, the DDA is a viable option for such problems - it is conceptually simple, can naturally handle arbitrary inhomogeneous particles, and benefits from the availability of open-source codes. However, the major limitation is the computational complexity rapidly increasing with the size of the system. A few ideas to alleviate this issue are discussed, including the fast multipole method and the multi-grid DDA. While the DDA is equally applicable to both connected and disconnected particle systems, when applied to the latter it provides some insights into the notion of multiple scattering.\",\"PeriodicalId\":400853,\"journal\":{\"name\":\"2016 URSI International Symposium on Electromagnetic Theory (EMTS)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 URSI International Symposium on Electromagnetic Theory (EMTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URSI-EMTS.2016.7571405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 URSI International Symposium on Electromagnetic Theory (EMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URSI-EMTS.2016.7571405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

离散偶极子近似(DDA)是模拟任意粒子光散射的一种常用方法。本讲座回顾了DDA,重点介绍了它在非常大的粒子系统中的应用,这些系统通常由大量大小与波长相当或大于波长的粒子组成。总的来说,DDA是解决这类问题的可行选择——它概念简单,可以自然地处理任意非均匀粒子,并且受益于开源代码的可用性。然而,主要的限制是计算复杂度随着系统的规模而迅速增加。针对这一问题,提出了快速多极子方法和多网格DDA方法。虽然DDA同样适用于连接和不连接的粒子系统,但当应用于后者时,它提供了对多重散射概念的一些见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capabilities of the discrete dipole approximation for large particle systems
The discrete dipole approximation (DDA) is a general method to simulate light scattering by arbitrary particles. This talk reviews the DDA with focus on its application to very large particle systems, typically consisting of large numbers of particles with sizes comparable to or larger than the wavelength. Overall, the DDA is a viable option for such problems - it is conceptually simple, can naturally handle arbitrary inhomogeneous particles, and benefits from the availability of open-source codes. However, the major limitation is the computational complexity rapidly increasing with the size of the system. A few ideas to alleviate this issue are discussed, including the fast multipole method and the multi-grid DDA. While the DDA is equally applicable to both connected and disconnected particle systems, when applied to the latter it provides some insights into the notion of multiple scattering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信