在广义关联规则挖掘中寻找广义频繁项集的一种新方法

Kritsada Sriphaew, T. Theeramunkong
{"title":"在广义关联规则挖掘中寻找广义频繁项集的一种新方法","authors":"Kritsada Sriphaew, T. Theeramunkong","doi":"10.1109/ISCC.2002.1021800","DOIUrl":null,"url":null,"abstract":"Generalized association rule mining is an extension of traditional association rule mining to discover more informative rules, given a taxonomy. We describe a formal framework for the problem of mining generalized association rules. In the framework, The subset-superset and the parent-child relationships among generalized itemsets are introduced to present the different views of generalized itemsets, i.e. the lattice of generalized itemsets and the taxonomies of k-generalized itemsets respectively. We present an optimization technique to reduce the time consumed by applying two constraints each of which corresponds to each view of generalized itemsets. In the mining process, a new set enumeration algorithm, named SET is proposed. It utilizes these constraints to speed up the mining of all generalized frequent itemsets. By experiments on synthetic data, the results show that SET outperforms the current most efficient algorithm, Prutax, by an order of magnitude or more.","PeriodicalId":261743,"journal":{"name":"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"A new method for finding generalized frequent itemsets in generalized association rule mining\",\"authors\":\"Kritsada Sriphaew, T. Theeramunkong\",\"doi\":\"10.1109/ISCC.2002.1021800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized association rule mining is an extension of traditional association rule mining to discover more informative rules, given a taxonomy. We describe a formal framework for the problem of mining generalized association rules. In the framework, The subset-superset and the parent-child relationships among generalized itemsets are introduced to present the different views of generalized itemsets, i.e. the lattice of generalized itemsets and the taxonomies of k-generalized itemsets respectively. We present an optimization technique to reduce the time consumed by applying two constraints each of which corresponds to each view of generalized itemsets. In the mining process, a new set enumeration algorithm, named SET is proposed. It utilizes these constraints to speed up the mining of all generalized frequent itemsets. By experiments on synthetic data, the results show that SET outperforms the current most efficient algorithm, Prutax, by an order of magnitude or more.\",\"PeriodicalId\":261743,\"journal\":{\"name\":\"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications\",\"volume\":\"194 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2002.1021800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2002.1021800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

广义关联规则挖掘是传统关联规则挖掘的扩展,可以在给定的分类中发现更多信息的规则。我们描述了一个挖掘广义关联规则问题的形式化框架。在此框架中,引入了广义项集的子集-超集和父-子关系,分别给出了广义项集的不同观点,即广义项集的格和k-广义项集的分类。我们提出了一种优化技术,通过应用两个约束来减少时间消耗,每个约束对应于广义项集的每个视图。在挖掘过程中,提出了一种新的集合枚举算法set。它利用这些约束来加速所有广义频繁项集的挖掘。通过对合成数据的实验,结果表明SET比目前最有效的算法Prutax高出一个数量级或更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for finding generalized frequent itemsets in generalized association rule mining
Generalized association rule mining is an extension of traditional association rule mining to discover more informative rules, given a taxonomy. We describe a formal framework for the problem of mining generalized association rules. In the framework, The subset-superset and the parent-child relationships among generalized itemsets are introduced to present the different views of generalized itemsets, i.e. the lattice of generalized itemsets and the taxonomies of k-generalized itemsets respectively. We present an optimization technique to reduce the time consumed by applying two constraints each of which corresponds to each view of generalized itemsets. In the mining process, a new set enumeration algorithm, named SET is proposed. It utilizes these constraints to speed up the mining of all generalized frequent itemsets. By experiments on synthetic data, the results show that SET outperforms the current most efficient algorithm, Prutax, by an order of magnitude or more.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信