回顾跨模态哈希的性能度量

Hongya Wang, Shunxin Dai, Ming Du, Bo Xu, Mingyong Li
{"title":"回顾跨模态哈希的性能度量","authors":"Hongya Wang, Shunxin Dai, Ming Du, Bo Xu, Mingyong Li","doi":"10.1145/3512527.3531363","DOIUrl":null,"url":null,"abstract":"Recently, cross-modal hashing has attracted much attention due to its low storage cost and fast query speed. Mean Average Precision (MAP) is the most widely used performance measure for cross-modal hashing. However, we found that the MAP scores do not fully reflect the quality of the top-K results for cross-modal retrieval because it neglects multi-label information and overlooks the label semantic hierarchy. In view of this, we propose a new performance measure named Normalized Weighted Discounted Cumulative Gains (NWDCG) by extending Normalized Discounted Cumulative Gains (NDCG) using co-occurrence probability matrix. To verify the effectiveness of NWDCG, we conduct extensive experiments using three popular cross-modal hashing schemes over two publically available datasets.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting Performance Measures for Cross-Modal Hashing\",\"authors\":\"Hongya Wang, Shunxin Dai, Ming Du, Bo Xu, Mingyong Li\",\"doi\":\"10.1145/3512527.3531363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, cross-modal hashing has attracted much attention due to its low storage cost and fast query speed. Mean Average Precision (MAP) is the most widely used performance measure for cross-modal hashing. However, we found that the MAP scores do not fully reflect the quality of the top-K results for cross-modal retrieval because it neglects multi-label information and overlooks the label semantic hierarchy. In view of this, we propose a new performance measure named Normalized Weighted Discounted Cumulative Gains (NWDCG) by extending Normalized Discounted Cumulative Gains (NDCG) using co-occurrence probability matrix. To verify the effectiveness of NWDCG, we conduct extensive experiments using three popular cross-modal hashing schemes over two publically available datasets.\",\"PeriodicalId\":179895,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512527.3531363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,跨模态哈希以其低廉的存储成本和快速的查询速度备受关注。平均精度(MAP)是跨模态哈希中使用最广泛的性能度量。然而,我们发现MAP分数并不能完全反映跨模态检索的top-K结果的质量,因为它忽略了多标签信息并忽略了标签语义层次。鉴于此,我们利用共现概率矩阵对归一化贴现累积增益(NDCG)进行扩展,提出了一种新的性能度量方法——归一化加权贴现累积增益(NWDCG)。为了验证NWDCG的有效性,我们在两个公开可用的数据集上使用三种流行的跨模态哈希方案进行了广泛的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting Performance Measures for Cross-Modal Hashing
Recently, cross-modal hashing has attracted much attention due to its low storage cost and fast query speed. Mean Average Precision (MAP) is the most widely used performance measure for cross-modal hashing. However, we found that the MAP scores do not fully reflect the quality of the top-K results for cross-modal retrieval because it neglects multi-label information and overlooks the label semantic hierarchy. In view of this, we propose a new performance measure named Normalized Weighted Discounted Cumulative Gains (NWDCG) by extending Normalized Discounted Cumulative Gains (NDCG) using co-occurrence probability matrix. To verify the effectiveness of NWDCG, we conduct extensive experiments using three popular cross-modal hashing schemes over two publically available datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信