基于速度的多变化点推理人体运动行为无监督分割

Lisa Senger, M. Schröer, J. H. Metzen, E. Kirchner
{"title":"基于速度的多变化点推理人体运动行为无监督分割","authors":"Lisa Senger, M. Schröer, J. H. Metzen, E. Kirchner","doi":"10.1109/ICPR.2014.781","DOIUrl":null,"url":null,"abstract":"In order to transfer complex human behavior to a robot, segmentation methods are needed which are able to detect central movement patterns that can be combined to generate a wide range of behaviors. We propose an algorithm that segments human movements into behavior building blocks in a fully automatic way, called velocity-based Multiple Change-point Inference (vMCI). Based on characteristic bell-shaped velocity patterns that can be found in point-to-point arm movements, the algorithm infers segment borders using Bayesian inference. Different segment lengths and variations in the movement execution can be handled. Moreover, the number of segments the movement is composed of need not be known in advance. Several experiments are performed on synthetic and motion capturing data of human movements to compare vMCI with other techniques for unsupervised segmentation. The results show that vMCI is able to detect segment borders even in noisy data and in demonstrations with smooth transitions between segments.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior\",\"authors\":\"Lisa Senger, M. Schröer, J. H. Metzen, E. Kirchner\",\"doi\":\"10.1109/ICPR.2014.781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to transfer complex human behavior to a robot, segmentation methods are needed which are able to detect central movement patterns that can be combined to generate a wide range of behaviors. We propose an algorithm that segments human movements into behavior building blocks in a fully automatic way, called velocity-based Multiple Change-point Inference (vMCI). Based on characteristic bell-shaped velocity patterns that can be found in point-to-point arm movements, the algorithm infers segment borders using Bayesian inference. Different segment lengths and variations in the movement execution can be handled. Moreover, the number of segments the movement is composed of need not be known in advance. Several experiments are performed on synthetic and motion capturing data of human movements to compare vMCI with other techniques for unsupervised segmentation. The results show that vMCI is able to detect segment borders even in noisy data and in demonstrations with smooth transitions between segments.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

为了将复杂的人类行为转移到机器人身上,需要能够检测中心运动模式的分割方法,这些模式可以组合起来产生广泛的行为。我们提出了一种以全自动方式将人类运动分割成行为构建块的算法,称为基于速度的多变化点推理(vMCI)。基于点对点手臂运动的钟形速度模式特征,该算法使用贝叶斯推理来推断分段边界。可以处理不同的片段长度和运动执行中的变化。此外,不需要事先知道运动所组成的段数。在人体运动的合成数据和动作捕捉数据上进行了实验,比较了vMCI与其他无监督分割技术的差异。结果表明,即使在有噪声的数据和具有平滑过渡的演示中,vMCI也能检测到段的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior
In order to transfer complex human behavior to a robot, segmentation methods are needed which are able to detect central movement patterns that can be combined to generate a wide range of behaviors. We propose an algorithm that segments human movements into behavior building blocks in a fully automatic way, called velocity-based Multiple Change-point Inference (vMCI). Based on characteristic bell-shaped velocity patterns that can be found in point-to-point arm movements, the algorithm infers segment borders using Bayesian inference. Different segment lengths and variations in the movement execution can be handled. Moreover, the number of segments the movement is composed of need not be known in advance. Several experiments are performed on synthetic and motion capturing data of human movements to compare vMCI with other techniques for unsupervised segmentation. The results show that vMCI is able to detect segment borders even in noisy data and in demonstrations with smooth transitions between segments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信