学术网页的名称和出版物的联合识别

Yimeng Dai, Jianzhong Qi, Rui Zhang
{"title":"学术网页的名称和出版物的联合识别","authors":"Yimeng Dai, Jianzhong Qi, Rui Zhang","doi":"10.1145/3336191.3371771","DOIUrl":null,"url":null,"abstract":"Academic homepages are an important source for learning researchers' profiles. Recognising person names and publications in academic homepages are two fundamental tasks for understanding the identities of the homepages and collaboration networks of the researchers. Existing studies have tackled person name recognition and publication recognition separately. We observe that these two tasks are correlated since person names and publications often co-occur. Further, there are strong position patterns for the occurrence of person names and publications. With these observations, we propose a novel deep learning model consisting of two main modules, an alternatingly updated memory module which exploits the knowledge and correlation from both tasks, and a position-aware memory module which captures the patterns of where in a homepage names and publications appear. Empirical results show that our proposed model outperforms the state-of-the-art publication recognition model by 3.64% in F1 score and outperforms the state-of-the-art person name recognition model by 2.06% in F1 score. Ablation studies and visualisation confirm the effectiveness of the proposed modules.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Joint Recognition of Names and Publications in Academic Homepages\",\"authors\":\"Yimeng Dai, Jianzhong Qi, Rui Zhang\",\"doi\":\"10.1145/3336191.3371771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Academic homepages are an important source for learning researchers' profiles. Recognising person names and publications in academic homepages are two fundamental tasks for understanding the identities of the homepages and collaboration networks of the researchers. Existing studies have tackled person name recognition and publication recognition separately. We observe that these two tasks are correlated since person names and publications often co-occur. Further, there are strong position patterns for the occurrence of person names and publications. With these observations, we propose a novel deep learning model consisting of two main modules, an alternatingly updated memory module which exploits the knowledge and correlation from both tasks, and a position-aware memory module which captures the patterns of where in a homepage names and publications appear. Empirical results show that our proposed model outperforms the state-of-the-art publication recognition model by 3.64% in F1 score and outperforms the state-of-the-art person name recognition model by 2.06% in F1 score. Ablation studies and visualisation confirm the effectiveness of the proposed modules.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

学术网站是学习研究者资料的重要来源。识别学术主页上的人名和出版物是了解研究人员的主页身份和合作网络的两项基本任务。现有的研究将人名识别和出版物识别分开处理。我们观察到这两个任务是相关的,因为人名和出版物经常同时出现。此外,人名和出版物的出现也有很强的位置模式。根据这些观察,我们提出了一个新的深度学习模型,该模型由两个主要模块组成,一个是交替更新的记忆模块,它利用来自两个任务的知识和相关性,另一个是位置感知记忆模块,它捕获主页名称和出版物出现的模式。实证结果表明,本文提出的模型在F1得分上优于目前最先进的出版物识别模型3.64%,在F1得分上优于目前最先进的人名识别模型2.06%。消融研究和可视化证实了所提出模块的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Recognition of Names and Publications in Academic Homepages
Academic homepages are an important source for learning researchers' profiles. Recognising person names and publications in academic homepages are two fundamental tasks for understanding the identities of the homepages and collaboration networks of the researchers. Existing studies have tackled person name recognition and publication recognition separately. We observe that these two tasks are correlated since person names and publications often co-occur. Further, there are strong position patterns for the occurrence of person names and publications. With these observations, we propose a novel deep learning model consisting of two main modules, an alternatingly updated memory module which exploits the knowledge and correlation from both tasks, and a position-aware memory module which captures the patterns of where in a homepage names and publications appear. Empirical results show that our proposed model outperforms the state-of-the-art publication recognition model by 3.64% in F1 score and outperforms the state-of-the-art person name recognition model by 2.06% in F1 score. Ablation studies and visualisation confirm the effectiveness of the proposed modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信