{"title":"基于石墨烯和二硫化钼层的聚合物棱镜表面等离子体共振传感器灵敏度的硅研究","authors":"A. A. Melo, E. P. Rodrigues, A. Lima","doi":"10.1109/BioSMART54244.2021.9677846","DOIUrl":null,"url":null,"abstract":"This paper presents an in silico study on the use of graphene and molybdenum disulfide to increase sensor sensitivity. A multilayer structure in the Kretschmann configuration whose optically coupled substrate is a polymeric trapezoidal prism is used in angular interrogation mode to detect changes in the order of 0.002 in the analyte layer. The graphene monolayers deposition above the metallic film results in a significant increase in the sensitivity, reaching 8452.11 nm/RIU. However, despite being widely used to improve sensor responsiveness in some SPR sensor models, the addition of the molybdenum disulfide layer reduces the improvement resulting from the insertion of the graphene layers.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"In silico study of sensitivity of polymeric prism-based surface plasmon resonance sensors based on graphene and molybdenum disulfide layers\",\"authors\":\"A. A. Melo, E. P. Rodrigues, A. Lima\",\"doi\":\"10.1109/BioSMART54244.2021.9677846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an in silico study on the use of graphene and molybdenum disulfide to increase sensor sensitivity. A multilayer structure in the Kretschmann configuration whose optically coupled substrate is a polymeric trapezoidal prism is used in angular interrogation mode to detect changes in the order of 0.002 in the analyte layer. The graphene monolayers deposition above the metallic film results in a significant increase in the sensitivity, reaching 8452.11 nm/RIU. However, despite being widely used to improve sensor responsiveness in some SPR sensor models, the addition of the molybdenum disulfide layer reduces the improvement resulting from the insertion of the graphene layers.\",\"PeriodicalId\":286026,\"journal\":{\"name\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioSMART54244.2021.9677846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In silico study of sensitivity of polymeric prism-based surface plasmon resonance sensors based on graphene and molybdenum disulfide layers
This paper presents an in silico study on the use of graphene and molybdenum disulfide to increase sensor sensitivity. A multilayer structure in the Kretschmann configuration whose optically coupled substrate is a polymeric trapezoidal prism is used in angular interrogation mode to detect changes in the order of 0.002 in the analyte layer. The graphene monolayers deposition above the metallic film results in a significant increase in the sensitivity, reaching 8452.11 nm/RIU. However, despite being widely used to improve sensor responsiveness in some SPR sensor models, the addition of the molybdenum disulfide layer reduces the improvement resulting from the insertion of the graphene layers.