F. D. Carvalho, Julio T. Pimentel, Lucas X. T. Bezerra
{"title":"基于单一自适应L1距离的符号区间数据聚类","authors":"F. D. Carvalho, Julio T. Pimentel, Lucas X. T. Bezerra","doi":"10.1109/IJCNN.2007.4370959","DOIUrl":null,"url":null,"abstract":"The recording of symbolic interval data has become a common practice with the recent advances in database technologies. This paper introduces a dynamic clustering method to partitioning symbolic interval data. This method furnishes a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. To compare symbolic interval data, the method uses a single adaptive L1 distance that at each iteration changes but is the same for all the clusters. Experiments with real and synthetic symbolic interval data sets showed the usefulness of the proposed method.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Clustering of symbolic interval data based on a single adaptive L1 distance\",\"authors\":\"F. D. Carvalho, Julio T. Pimentel, Lucas X. T. Bezerra\",\"doi\":\"10.1109/IJCNN.2007.4370959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recording of symbolic interval data has become a common practice with the recent advances in database technologies. This paper introduces a dynamic clustering method to partitioning symbolic interval data. This method furnishes a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. To compare symbolic interval data, the method uses a single adaptive L1 distance that at each iteration changes but is the same for all the clusters. Experiments with real and synthetic symbolic interval data sets showed the usefulness of the proposed method.\",\"PeriodicalId\":350091,\"journal\":{\"name\":\"2007 International Joint Conference on Neural Networks\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2007.4370959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4370959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clustering of symbolic interval data based on a single adaptive L1 distance
The recording of symbolic interval data has become a common practice with the recent advances in database technologies. This paper introduces a dynamic clustering method to partitioning symbolic interval data. This method furnishes a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. To compare symbolic interval data, the method uses a single adaptive L1 distance that at each iteration changes but is the same for all the clusters. Experiments with real and synthetic symbolic interval data sets showed the usefulness of the proposed method.