Eduardo Moreira, A. Pinto, P. Costa, A. Moreira, G. Veiga, José Lima, J. P. Sousa, Pedro Costa
{"title":"非标准建筑施工用电缆机器人:一种动态定位系统","authors":"Eduardo Moreira, A. Pinto, P. Costa, A. Moreira, G. Veiga, José Lima, J. P. Sousa, Pedro Costa","doi":"10.1109/ICIT.2015.7125568","DOIUrl":null,"url":null,"abstract":"In the past few years, cable-driven robots have received some attention by the scientific community and the industry. They have special characteristics that made them very reliable to operate with the level of safeness that is required by different environments, such as, handling of hazardous materials in construction sites. This paper presents a cable-driven robot called SPIDERobot, that was developed for automated construction of architectural projects. This robot has a rotating claw and it is controlled by a set of 4 cables that allow 4 degrees of freedom. In addition to the robot, this paper introduces a Dynamic Control System (DCS) that controls the positioning of the robot and assures that the length of cables is always within a safe value. Results show that traditional force-feasible approaches are more influenced by the pulling forces or the geometric arrangement of all cables and their positioning is significantly less accurate than the DCS. Therefore, the architecture of the SPIDERobot is designed to enable an easily scaling up of the solution to higher dimensions for operating in realistic environments.","PeriodicalId":156295,"journal":{"name":"2015 IEEE International Conference on Industrial Technology (ICIT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Cable robot for non-standard architecture and construction: A dynamic positioning system\",\"authors\":\"Eduardo Moreira, A. Pinto, P. Costa, A. Moreira, G. Veiga, José Lima, J. P. Sousa, Pedro Costa\",\"doi\":\"10.1109/ICIT.2015.7125568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past few years, cable-driven robots have received some attention by the scientific community and the industry. They have special characteristics that made them very reliable to operate with the level of safeness that is required by different environments, such as, handling of hazardous materials in construction sites. This paper presents a cable-driven robot called SPIDERobot, that was developed for automated construction of architectural projects. This robot has a rotating claw and it is controlled by a set of 4 cables that allow 4 degrees of freedom. In addition to the robot, this paper introduces a Dynamic Control System (DCS) that controls the positioning of the robot and assures that the length of cables is always within a safe value. Results show that traditional force-feasible approaches are more influenced by the pulling forces or the geometric arrangement of all cables and their positioning is significantly less accurate than the DCS. Therefore, the architecture of the SPIDERobot is designed to enable an easily scaling up of the solution to higher dimensions for operating in realistic environments.\",\"PeriodicalId\":156295,\"journal\":{\"name\":\"2015 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2015.7125568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2015.7125568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cable robot for non-standard architecture and construction: A dynamic positioning system
In the past few years, cable-driven robots have received some attention by the scientific community and the industry. They have special characteristics that made them very reliable to operate with the level of safeness that is required by different environments, such as, handling of hazardous materials in construction sites. This paper presents a cable-driven robot called SPIDERobot, that was developed for automated construction of architectural projects. This robot has a rotating claw and it is controlled by a set of 4 cables that allow 4 degrees of freedom. In addition to the robot, this paper introduces a Dynamic Control System (DCS) that controls the positioning of the robot and assures that the length of cables is always within a safe value. Results show that traditional force-feasible approaches are more influenced by the pulling forces or the geometric arrangement of all cables and their positioning is significantly less accurate than the DCS. Therefore, the architecture of the SPIDERobot is designed to enable an easily scaling up of the solution to higher dimensions for operating in realistic environments.