{"title":"故障公式错误定位","authors":"Sampath Kannan, Kevin Tian","doi":"10.1145/3313776","DOIUrl":null,"url":null,"abstract":"Given a drawing of a read-once formula (called the blueprint), and a blackbox implementation with the same topology as the blueprint that purports to compute the formula, can we tell if it does? Under a fault model, where the only faults in the implementation are gates that complement their outputs, we show that there is an efficient algorithm that makes a linear number of probes to the blackbox implementation and determines if the blueprint and implementation are identical. We also show a matching lower bound. We further ask whether we can diagnose where the faults are, using blackbox testing. We prove that if the implementation has a property called polynomial balance, then it is possible to do this efficiently. To complement this result, we show that even if the blueprint is polynomially balanced and there are only logarithmically many errors in the implementation, the implementation could be unbalanced and the diagnosis problem provably requires super-polynomially many tests. We point out that this problem is one instance of a general class of problems of learning deviations from a blueprint, which we call conformance learning. Conformance learning seems worthy of further investigation in a broader context.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locating Errors in Faulty Formulas\",\"authors\":\"Sampath Kannan, Kevin Tian\",\"doi\":\"10.1145/3313776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a drawing of a read-once formula (called the blueprint), and a blackbox implementation with the same topology as the blueprint that purports to compute the formula, can we tell if it does? Under a fault model, where the only faults in the implementation are gates that complement their outputs, we show that there is an efficient algorithm that makes a linear number of probes to the blackbox implementation and determines if the blueprint and implementation are identical. We also show a matching lower bound. We further ask whether we can diagnose where the faults are, using blackbox testing. We prove that if the implementation has a property called polynomial balance, then it is possible to do this efficiently. To complement this result, we show that even if the blueprint is polynomially balanced and there are only logarithmically many errors in the implementation, the implementation could be unbalanced and the diagnosis problem provably requires super-polynomially many tests. We point out that this problem is one instance of a general class of problems of learning deviations from a blueprint, which we call conformance learning. Conformance learning seems worthy of further investigation in a broader context.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3313776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3313776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Given a drawing of a read-once formula (called the blueprint), and a blackbox implementation with the same topology as the blueprint that purports to compute the formula, can we tell if it does? Under a fault model, where the only faults in the implementation are gates that complement their outputs, we show that there is an efficient algorithm that makes a linear number of probes to the blackbox implementation and determines if the blueprint and implementation are identical. We also show a matching lower bound. We further ask whether we can diagnose where the faults are, using blackbox testing. We prove that if the implementation has a property called polynomial balance, then it is possible to do this efficiently. To complement this result, we show that even if the blueprint is polynomially balanced and there are only logarithmically many errors in the implementation, the implementation could be unbalanced and the diagnosis problem provably requires super-polynomially many tests. We point out that this problem is one instance of a general class of problems of learning deviations from a blueprint, which we call conformance learning. Conformance learning seems worthy of further investigation in a broader context.