一种基于规则的、独立于领域的意见和持有者识别方法

Ioana Maria Sima, Mariana Vunvulea
{"title":"一种基于规则的、独立于领域的意见和持有者识别方法","authors":"Ioana Maria Sima, Mariana Vunvulea","doi":"10.1109/ICCP.2013.6646081","DOIUrl":null,"url":null,"abstract":"Mining sentiments from text is currently an important problem in information retrieval systems. In this paper we propose a solution for extracting opinions and opinion holders from large texts. Our goal is to achieve a high level of domain independence by implementing a rule-based approach. The results of our system have proven an accuracy which is comparable to that of systems that use a supervised learning approach, which is domain dependent.","PeriodicalId":380109,"journal":{"name":"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A rule-based, domain independent approach for opinion and holder identification\",\"authors\":\"Ioana Maria Sima, Mariana Vunvulea\",\"doi\":\"10.1109/ICCP.2013.6646081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining sentiments from text is currently an important problem in information retrieval systems. In this paper we propose a solution for extracting opinions and opinion holders from large texts. Our goal is to achieve a high level of domain independence by implementing a rule-based approach. The results of our system have proven an accuracy which is comparable to that of systems that use a supervised learning approach, which is domain dependent.\",\"PeriodicalId\":380109,\"journal\":{\"name\":\"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2013.6646081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2013.6646081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

从文本中挖掘情感是当前信息检索系统中的一个重要问题。本文提出了一种从大型文本中提取意见和意见持有人的解决方案。我们的目标是通过实现基于规则的方法来实现高度的领域独立性。我们的系统的结果已经证明了与使用监督学习方法的系统相当的准确性,这是依赖于领域的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rule-based, domain independent approach for opinion and holder identification
Mining sentiments from text is currently an important problem in information retrieval systems. In this paper we propose a solution for extracting opinions and opinion holders from large texts. Our goal is to achieve a high level of domain independence by implementing a rule-based approach. The results of our system have proven an accuracy which is comparable to that of systems that use a supervised learning approach, which is domain dependent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信