基于LIMoSim的车辆移动与通信轻量化联合仿真

Benjamin Sliwa, Johannes Pillmann, Fabian Eckermann, L. Habel, M. Schreckenberg, C. Wietfeld
{"title":"基于LIMoSim的车辆移动与通信轻量化联合仿真","authors":"Benjamin Sliwa, Johannes Pillmann, Fabian Eckermann, L. Habel, M. Schreckenberg, C. Wietfeld","doi":"10.1109/VNC.2017.8275600","DOIUrl":null,"url":null,"abstract":"The provision of reliable and efficient communication is a key requirement for the deployment of autonomous cars as well as for future Intelligent Transportation Systems (ITSs) in smart cities. Novel communications technologies will have to face highly-complex and extremely dynamic network topologies in a Vehicle-to-Everything (V2X)-context and will require the consideration of mobility information into decision processes for routing, handover and resource allocation. Consequently, researches and developers require simulation tools that are capable of providing realistic representations for both components as well as means for leveraging the convergence of mobility and communication. In this paper, we present a lightweight framework for the simulation of vehicular mobility, which has a communications-oriented perspective by design and is intended to be used in combination with a network simulator. In contrast to existing approaches, it works without requiring Interprocess Communication (IPC) using an integrated approach and is therefore able to reduce the complexity of simulation setups significantly. Since mobility and communication share the same codebase, it is able to model scenarios with a high level of interdependency between those two components. In a proof-of-concept study, we evaluate the proposed simulator in different example scenarios in an Long Term Evolution (LTE)-context using real-world map data.","PeriodicalId":101592,"journal":{"name":"2017 IEEE Vehicular Networking Conference (VNC)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Lightweight joint simulation of vehicular mobility and communication with LIMoSim\",\"authors\":\"Benjamin Sliwa, Johannes Pillmann, Fabian Eckermann, L. Habel, M. Schreckenberg, C. Wietfeld\",\"doi\":\"10.1109/VNC.2017.8275600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The provision of reliable and efficient communication is a key requirement for the deployment of autonomous cars as well as for future Intelligent Transportation Systems (ITSs) in smart cities. Novel communications technologies will have to face highly-complex and extremely dynamic network topologies in a Vehicle-to-Everything (V2X)-context and will require the consideration of mobility information into decision processes for routing, handover and resource allocation. Consequently, researches and developers require simulation tools that are capable of providing realistic representations for both components as well as means for leveraging the convergence of mobility and communication. In this paper, we present a lightweight framework for the simulation of vehicular mobility, which has a communications-oriented perspective by design and is intended to be used in combination with a network simulator. In contrast to existing approaches, it works without requiring Interprocess Communication (IPC) using an integrated approach and is therefore able to reduce the complexity of simulation setups significantly. Since mobility and communication share the same codebase, it is able to model scenarios with a high level of interdependency between those two components. In a proof-of-concept study, we evaluate the proposed simulator in different example scenarios in an Long Term Evolution (LTE)-context using real-world map data.\",\"PeriodicalId\":101592,\"journal\":{\"name\":\"2017 IEEE Vehicular Networking Conference (VNC)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Vehicular Networking Conference (VNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VNC.2017.8275600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2017.8275600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提供可靠和高效的通信是部署自动驾驶汽车以及智能城市中未来智能交通系统(its)的关键要求。新型通信技术将不得不面对车辆对一切(V2X)环境中高度复杂和极度动态的网络拓扑结构,并且需要在路由、切换和资源分配的决策过程中考虑移动性信息。因此,研究人员和开发人员需要能够为两个组件提供真实表示的仿真工具,以及利用移动性和通信融合的手段。在本文中,我们提出了一个用于车辆移动性模拟的轻量级框架,该框架在设计上具有面向通信的视角,并打算与网络模拟器结合使用。与现有方法相比,它不需要使用集成方法进行进程间通信(IPC),因此能够显着降低模拟设置的复杂性。由于移动性和通信共享相同的代码库,因此可以对这两个组件之间高度相互依赖的场景进行建模。在一项概念验证研究中,我们使用真实世界的地图数据,在长期演进(LTE)环境中的不同示例场景中评估了所提出的模拟器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight joint simulation of vehicular mobility and communication with LIMoSim
The provision of reliable and efficient communication is a key requirement for the deployment of autonomous cars as well as for future Intelligent Transportation Systems (ITSs) in smart cities. Novel communications technologies will have to face highly-complex and extremely dynamic network topologies in a Vehicle-to-Everything (V2X)-context and will require the consideration of mobility information into decision processes for routing, handover and resource allocation. Consequently, researches and developers require simulation tools that are capable of providing realistic representations for both components as well as means for leveraging the convergence of mobility and communication. In this paper, we present a lightweight framework for the simulation of vehicular mobility, which has a communications-oriented perspective by design and is intended to be used in combination with a network simulator. In contrast to existing approaches, it works without requiring Interprocess Communication (IPC) using an integrated approach and is therefore able to reduce the complexity of simulation setups significantly. Since mobility and communication share the same codebase, it is able to model scenarios with a high level of interdependency between those two components. In a proof-of-concept study, we evaluate the proposed simulator in different example scenarios in an Long Term Evolution (LTE)-context using real-world map data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信