关联模式分类器学习集基数选择的一种准则

J. Soria-Alcaraz, Raul Santigo-Montero, Carpio-Valadez J. Martin
{"title":"关联模式分类器学习集基数选择的一种准则","authors":"J. Soria-Alcaraz, Raul Santigo-Montero, Carpio-Valadez J. Martin","doi":"10.1109/CERMA.2010.20","DOIUrl":null,"url":null,"abstract":"The Associative Pattern Classifier (CAP) is a novel approach to solve the pattern classification problem. Recent experiments of the behavior of this classifier in different applications have given encouraging results. Due a this evidence, It has been thinking about the existence of a minimum number for which a higher value of samples used in the learning phase of this classifier brings a very low effect over their classification performance. This paper present an empiric way to obtain this minimum number based in the structure of the used database. this method allows us to define a minimum size for the set used in the learning phase of CAP for which the final classification performance will be reasonably stable, optimizing time and computational resources in the process.","PeriodicalId":119218,"journal":{"name":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"One Criterion for the Selection of the Cardinality of Learning Set Used by the Associative Pattern Classifier\",\"authors\":\"J. Soria-Alcaraz, Raul Santigo-Montero, Carpio-Valadez J. Martin\",\"doi\":\"10.1109/CERMA.2010.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Associative Pattern Classifier (CAP) is a novel approach to solve the pattern classification problem. Recent experiments of the behavior of this classifier in different applications have given encouraging results. Due a this evidence, It has been thinking about the existence of a minimum number for which a higher value of samples used in the learning phase of this classifier brings a very low effect over their classification performance. This paper present an empiric way to obtain this minimum number based in the structure of the used database. this method allows us to define a minimum size for the set used in the learning phase of CAP for which the final classification performance will be reasonably stable, optimizing time and computational resources in the process.\",\"PeriodicalId\":119218,\"journal\":{\"name\":\"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2010.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2010.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

关联模式分类器(CAP)是一种解决模式分类问题的新方法。最近对该分类器在不同应用中的行为的实验给出了令人鼓舞的结果。由于这个证据,它一直在考虑存在一个最小数量,对于这个最小数量,在这个分类器的学习阶段使用的样本值越高,对它们的分类性能的影响就越小。本文根据所使用的数据库结构,提出了一种经验的方法来获得这个最小值。该方法允许我们为CAP学习阶段使用的集合定义一个最小大小,最终的分类性能将相当稳定,优化过程中的时间和计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One Criterion for the Selection of the Cardinality of Learning Set Used by the Associative Pattern Classifier
The Associative Pattern Classifier (CAP) is a novel approach to solve the pattern classification problem. Recent experiments of the behavior of this classifier in different applications have given encouraging results. Due a this evidence, It has been thinking about the existence of a minimum number for which a higher value of samples used in the learning phase of this classifier brings a very low effect over their classification performance. This paper present an empiric way to obtain this minimum number based in the structure of the used database. this method allows us to define a minimum size for the set used in the learning phase of CAP for which the final classification performance will be reasonably stable, optimizing time and computational resources in the process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信