SLIC:用于并行体绘制的预定线性图像合成

Aleksander Stompel, K. Ma, E. Lum, J. Ahrens, J. Patchett
{"title":"SLIC:用于并行体绘制的预定线性图像合成","authors":"Aleksander Stompel, K. Ma, E. Lum, J. Ahrens, J. Patchett","doi":"10.1109/PVGS.2003.1249040","DOIUrl":null,"url":null,"abstract":"Parallel volume rendering offers a feasible solution to the large data visualization problem by distributing both the data and rendering calculations among multiple computers connected by a network. In sort-last parallel volume rendering, each processor generates an image of its assigned subvolume, which is blended together with other images to derive the final image. Improving the efficiency of this compositing step, which requires interprocesssor communication, is the key to scalable, interactive rendering. The recent trend of using hardware-accelerated volume rendering demands further acceleration of the image compositing step. We present a new optimized parallel image compositing algorithm and its performance on a PC cluster. Our test results show that this new algorithm offers significant savings over previous algorithms in both communication and compositing costs. On a 64-node PC cluster with a 100BaseT network interconnect, we can achieve interactive rendering rates for images at resolutions up to 1024x1024 pixels at several frames per second.","PeriodicalId":307148,"journal":{"name":"IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003.","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"SLIC: scheduled linear image compositing for parallel volume rendering\",\"authors\":\"Aleksander Stompel, K. Ma, E. Lum, J. Ahrens, J. Patchett\",\"doi\":\"10.1109/PVGS.2003.1249040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel volume rendering offers a feasible solution to the large data visualization problem by distributing both the data and rendering calculations among multiple computers connected by a network. In sort-last parallel volume rendering, each processor generates an image of its assigned subvolume, which is blended together with other images to derive the final image. Improving the efficiency of this compositing step, which requires interprocesssor communication, is the key to scalable, interactive rendering. The recent trend of using hardware-accelerated volume rendering demands further acceleration of the image compositing step. We present a new optimized parallel image compositing algorithm and its performance on a PC cluster. Our test results show that this new algorithm offers significant savings over previous algorithms in both communication and compositing costs. On a 64-node PC cluster with a 100BaseT network interconnect, we can achieve interactive rendering rates for images at resolutions up to 1024x1024 pixels at several frames per second.\",\"PeriodicalId\":307148,\"journal\":{\"name\":\"IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003.\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVGS.2003.1249040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVGS.2003.1249040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

摘要

并行体绘制通过将数据和绘制计算分布在通过网络连接的多台计算机之间,为解决大数据可视化问题提供了可行的解决方案。在排序-最后并行体绘制中,每个处理器生成其分配的子体的图像,该图像与其他图像混合在一起,得到最终图像。提高这个需要处理器间通信的合成步骤的效率,是可扩展的交互式呈现的关键。最近使用硬件加速体绘制的趋势要求进一步加速图像合成步骤。提出了一种新的优化并行图像合成算法及其在PC集群上的性能。我们的测试结果表明,与以前的算法相比,这种新算法在通信和合成成本方面都有显著的节省。在具有100BaseT网络互连的64节点PC集群上,我们可以以每秒几帧的速度实现分辨率高达1024 × 1024像素的图像的交互渲染率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SLIC: scheduled linear image compositing for parallel volume rendering
Parallel volume rendering offers a feasible solution to the large data visualization problem by distributing both the data and rendering calculations among multiple computers connected by a network. In sort-last parallel volume rendering, each processor generates an image of its assigned subvolume, which is blended together with other images to derive the final image. Improving the efficiency of this compositing step, which requires interprocesssor communication, is the key to scalable, interactive rendering. The recent trend of using hardware-accelerated volume rendering demands further acceleration of the image compositing step. We present a new optimized parallel image compositing algorithm and its performance on a PC cluster. Our test results show that this new algorithm offers significant savings over previous algorithms in both communication and compositing costs. On a 64-node PC cluster with a 100BaseT network interconnect, we can achieve interactive rendering rates for images at resolutions up to 1024x1024 pixels at several frames per second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信