非awgn模型中的fisher信息矩阵和CRLB用于相位恢复问题

R. Balan
{"title":"非awgn模型中的fisher信息矩阵和CRLB用于相位恢复问题","authors":"R. Balan","doi":"10.1109/SAMPTA.2015.7148875","DOIUrl":null,"url":null,"abstract":"In this paper we derive the Fisher information matrix and the Cramer-Rao lower bound for the non-additive white Gaussian noise model yk = |{x, f<sub>k</sub>) + μk|<sup>2</sup>, 1 ≤ k ≤ m, where {f<sub>1</sub>, · · ·, f<sub>m</sub>} is a spanning set for C<sup>n</sup> and (μ<sub>1</sub>, ..., μ<sub>m</sub>) are i.i.d. realizations of the Gaussian complex process CN(0, ρ<sup>2</sup>). We obtain closed form expressions that include quadrature integration of elementary functions.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The fisher information matrix and the CRLB in a non-AWGN model for the phase retrieval problem\",\"authors\":\"R. Balan\",\"doi\":\"10.1109/SAMPTA.2015.7148875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we derive the Fisher information matrix and the Cramer-Rao lower bound for the non-additive white Gaussian noise model yk = |{x, f<sub>k</sub>) + μk|<sup>2</sup>, 1 ≤ k ≤ m, where {f<sub>1</sub>, · · ·, f<sub>m</sub>} is a spanning set for C<sup>n</sup> and (μ<sub>1</sub>, ..., μ<sub>m</sub>) are i.i.d. realizations of the Gaussian complex process CN(0, ρ<sup>2</sup>). We obtain closed form expressions that include quadrature integration of elementary functions.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文导出了非加性高斯白噪声模型yk = |{x, fk) + μk| 2,1≤k≤m的Fisher信息矩阵和Cramer-Rao下界,其中{f1,···,fm}是Cn和(μ1,…, μm)是高斯复过程CN(0, ρ2)的i.i.d实现。我们得到了包含初等函数正交积分的封闭表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The fisher information matrix and the CRLB in a non-AWGN model for the phase retrieval problem
In this paper we derive the Fisher information matrix and the Cramer-Rao lower bound for the non-additive white Gaussian noise model yk = |{x, fk) + μk|2, 1 ≤ k ≤ m, where {f1, · · ·, fm} is a spanning set for Cn and (μ1, ..., μm) are i.i.d. realizations of the Gaussian complex process CN(0, ρ2). We obtain closed form expressions that include quadrature integration of elementary functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信