{"title":"非awgn模型中的fisher信息矩阵和CRLB用于相位恢复问题","authors":"R. Balan","doi":"10.1109/SAMPTA.2015.7148875","DOIUrl":null,"url":null,"abstract":"In this paper we derive the Fisher information matrix and the Cramer-Rao lower bound for the non-additive white Gaussian noise model yk = |{x, f<sub>k</sub>) + μk|<sup>2</sup>, 1 ≤ k ≤ m, where {f<sub>1</sub>, · · ·, f<sub>m</sub>} is a spanning set for C<sup>n</sup> and (μ<sub>1</sub>, ..., μ<sub>m</sub>) are i.i.d. realizations of the Gaussian complex process CN(0, ρ<sup>2</sup>). We obtain closed form expressions that include quadrature integration of elementary functions.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The fisher information matrix and the CRLB in a non-AWGN model for the phase retrieval problem\",\"authors\":\"R. Balan\",\"doi\":\"10.1109/SAMPTA.2015.7148875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we derive the Fisher information matrix and the Cramer-Rao lower bound for the non-additive white Gaussian noise model yk = |{x, f<sub>k</sub>) + μk|<sup>2</sup>, 1 ≤ k ≤ m, where {f<sub>1</sub>, · · ·, f<sub>m</sub>} is a spanning set for C<sup>n</sup> and (μ<sub>1</sub>, ..., μ<sub>m</sub>) are i.i.d. realizations of the Gaussian complex process CN(0, ρ<sup>2</sup>). We obtain closed form expressions that include quadrature integration of elementary functions.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The fisher information matrix and the CRLB in a non-AWGN model for the phase retrieval problem
In this paper we derive the Fisher information matrix and the Cramer-Rao lower bound for the non-additive white Gaussian noise model yk = |{x, fk) + μk|2, 1 ≤ k ≤ m, where {f1, · · ·, fm} is a spanning set for Cn and (μ1, ..., μm) are i.i.d. realizations of the Gaussian complex process CN(0, ρ2). We obtain closed form expressions that include quadrature integration of elementary functions.