生成可解释的学生代码更正的算法

Yana Malysheva, Caitlin L. Kelleher
{"title":"生成可解释的学生代码更正的算法","authors":"Yana Malysheva, Caitlin L. Kelleher","doi":"10.1145/3564721.3564731","DOIUrl":null,"url":null,"abstract":"Students in introductory computer science courses often need individualized help when they get stuck solving programming problems. But providing such help can be time-consuming and thought-intensive, and therefore difficult to scale as Computer Science classes grow larger in size. Automatically generated fixes with explanations have the potential to integrate into a variety of mechanisms for providing help to students who are stuck on a programming problem. In this paper, we present a data-driven algorithm for generating explainable fixes to student code. We evaluate a Python implementation of the algorithm by comparing its output at different stages of the algorithm to state-of-the-art systems with similar goals. Our algorithm outperforms existing systems that can analyze and fix beginner-written Python code. Further, fixes it generates conform very well to corrections written by human experts for an existing benchmark of code correction quality.","PeriodicalId":149708,"journal":{"name":"Proceedings of the 22nd Koli Calling International Conference on Computing Education Research","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Algorithm for Generating Explainable Corrections to Student Code\",\"authors\":\"Yana Malysheva, Caitlin L. Kelleher\",\"doi\":\"10.1145/3564721.3564731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Students in introductory computer science courses often need individualized help when they get stuck solving programming problems. But providing such help can be time-consuming and thought-intensive, and therefore difficult to scale as Computer Science classes grow larger in size. Automatically generated fixes with explanations have the potential to integrate into a variety of mechanisms for providing help to students who are stuck on a programming problem. In this paper, we present a data-driven algorithm for generating explainable fixes to student code. We evaluate a Python implementation of the algorithm by comparing its output at different stages of the algorithm to state-of-the-art systems with similar goals. Our algorithm outperforms existing systems that can analyze and fix beginner-written Python code. Further, fixes it generates conform very well to corrections written by human experts for an existing benchmark of code correction quality.\",\"PeriodicalId\":149708,\"journal\":{\"name\":\"Proceedings of the 22nd Koli Calling International Conference on Computing Education Research\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd Koli Calling International Conference on Computing Education Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3564721.3564731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd Koli Calling International Conference on Computing Education Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3564721.3564731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

计算机科学入门课程的学生在解决编程问题时经常需要个性化的帮助。但是,提供这样的帮助既耗时又需要大量的思考,因此随着计算机科学课程规模的扩大,很难扩大规模。自动生成的带有解释的修复程序有可能集成到各种机制中,为被编程问题困住的学生提供帮助。在本文中,我们提出了一种数据驱动的算法,用于为学生代码生成可解释的修复。我们通过将算法在不同阶段的输出与具有相似目标的最先进系统进行比较,来评估该算法的Python实现。我们的算法优于可以分析和修复初学者编写的Python代码的现有系统。此外,它生成的修正非常符合人类专家为现有的代码修正质量基准编写的修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algorithm for Generating Explainable Corrections to Student Code
Students in introductory computer science courses often need individualized help when they get stuck solving programming problems. But providing such help can be time-consuming and thought-intensive, and therefore difficult to scale as Computer Science classes grow larger in size. Automatically generated fixes with explanations have the potential to integrate into a variety of mechanisms for providing help to students who are stuck on a programming problem. In this paper, we present a data-driven algorithm for generating explainable fixes to student code. We evaluate a Python implementation of the algorithm by comparing its output at different stages of the algorithm to state-of-the-art systems with similar goals. Our algorithm outperforms existing systems that can analyze and fix beginner-written Python code. Further, fixes it generates conform very well to corrections written by human experts for an existing benchmark of code correction quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信