{"title":"格罗腾狄克不等式的初等统一证明","authors":"S. Friedland, Lek-Heng Lim, Jinjie Zhang","doi":"10.4171/LEM/64-3/4-6","DOIUrl":null,"url":null,"abstract":"We present an elementary, self-contained proof of Grothendieck's inequality that unifies both the real and complex cases and yields both the Krivine and Haagerup bounds, the current best-known bounds for the real and complex Grothendieck constants respectively.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An elementary and unified proof of Grothendieck’s inequality\",\"authors\":\"S. Friedland, Lek-Heng Lim, Jinjie Zhang\",\"doi\":\"10.4171/LEM/64-3/4-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an elementary, self-contained proof of Grothendieck's inequality that unifies both the real and complex cases and yields both the Krivine and Haagerup bounds, the current best-known bounds for the real and complex Grothendieck constants respectively.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/64-3/4-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/64-3/4-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An elementary and unified proof of Grothendieck’s inequality
We present an elementary, self-contained proof of Grothendieck's inequality that unifies both the real and complex cases and yields both the Krivine and Haagerup bounds, the current best-known bounds for the real and complex Grothendieck constants respectively.