用于余热收集的InGaAsSb热光伏电池的优化

Rafiqi Rosli, H. J. Lee, M. Z. Jamaludin, M. Gamel, P. Ker
{"title":"用于余热收集的InGaAsSb热光伏电池的优化","authors":"Rafiqi Rosli, H. J. Lee, M. Z. Jamaludin, M. Gamel, P. Ker","doi":"10.1109/CENCON51869.2021.9627290","DOIUrl":null,"url":null,"abstract":"Alongside the growing energy demand, the exploration and invention in technology to achieve world sustainability goal is of particular interest. However, the limitation of low overall energy conversion efficiency in conventional fossil-fuel-fired power plants is yet to be resolved. Thermophotovoltaic (TPV) system is of great interest today, as it promotes the usage of renewable energy and improves the energy efficiency in a plant. Narrower bandgap materials such as InGaAsSb TPV cell has been reported to achieve a promising performance for waste-heat application. However, the performance of InGaAsSb TPV cell is yet to be optimized. Hence, this research aims to optimize 0.496 eV InGaAsSb to achieve better cell efficiency using Silvaco software under 10002000 K blackbody temperature, which complies with the heat harvesting application. At 1223 K blackbody temperature InGaAsSb can potentially generate electricity with 10.82% efficiency $\\left({{P_{out}} = 0.286{\\text{W/c}}{{\\mathrm{m}}^2}} \\right)$. By optimizing the doping level and emitter thickness, it is capable to produce a maximum output power of 0.31 and 0.33 W/cm2, respectively. Thus, this study shall contribute to the development of narrow bandgap TPV device for waste heat recovery system.","PeriodicalId":101715,"journal":{"name":"2021 IEEE Conference on Energy Conversion (CENCON)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of InGaAsSb Thermophotovoltaic Cell for Waste Heat Harvesting Application\",\"authors\":\"Rafiqi Rosli, H. J. Lee, M. Z. Jamaludin, M. Gamel, P. Ker\",\"doi\":\"10.1109/CENCON51869.2021.9627290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alongside the growing energy demand, the exploration and invention in technology to achieve world sustainability goal is of particular interest. However, the limitation of low overall energy conversion efficiency in conventional fossil-fuel-fired power plants is yet to be resolved. Thermophotovoltaic (TPV) system is of great interest today, as it promotes the usage of renewable energy and improves the energy efficiency in a plant. Narrower bandgap materials such as InGaAsSb TPV cell has been reported to achieve a promising performance for waste-heat application. However, the performance of InGaAsSb TPV cell is yet to be optimized. Hence, this research aims to optimize 0.496 eV InGaAsSb to achieve better cell efficiency using Silvaco software under 10002000 K blackbody temperature, which complies with the heat harvesting application. At 1223 K blackbody temperature InGaAsSb can potentially generate electricity with 10.82% efficiency $\\\\left({{P_{out}} = 0.286{\\\\text{W/c}}{{\\\\mathrm{m}}^2}} \\\\right)$. By optimizing the doping level and emitter thickness, it is capable to produce a maximum output power of 0.31 and 0.33 W/cm2, respectively. Thus, this study shall contribute to the development of narrow bandgap TPV device for waste heat recovery system.\",\"PeriodicalId\":101715,\"journal\":{\"name\":\"2021 IEEE Conference on Energy Conversion (CENCON)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Energy Conversion (CENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CENCON51869.2021.9627290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Energy Conversion (CENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENCON51869.2021.9627290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着能源需求的不断增长,为实现世界可持续发展目标而进行的技术探索和发明尤其令人感兴趣。然而,传统化石燃料发电厂整体能量转换效率低的局限性还有待解决。热光伏(TPV)系统在当今备受关注,因为它促进了可再生能源的使用并提高了工厂的能源效率。较窄的带隙材料如InGaAsSb TPV电池已被报道在废热应用中取得了很好的性能。然而,InGaAsSb TPV电池的性能还有待优化。因此,本研究旨在利用Silvaco软件对0.496 eV InGaAsSb进行优化,使其在10002000 K黑体温度下获得更好的电池效率,符合集热应用。在1223 K黑体温度下,InGaAsSb可以以10.82%的效率发电$\左({{P_{out}} = 0.286{\text{W/c}}{{\ maththrm {m}}^2}} \右)$。通过优化掺杂水平和发射极厚度,最大输出功率分别为0.31和0.33 W/cm2。因此,本研究将有助于废热回收系统窄带隙TPV装置的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of InGaAsSb Thermophotovoltaic Cell for Waste Heat Harvesting Application
Alongside the growing energy demand, the exploration and invention in technology to achieve world sustainability goal is of particular interest. However, the limitation of low overall energy conversion efficiency in conventional fossil-fuel-fired power plants is yet to be resolved. Thermophotovoltaic (TPV) system is of great interest today, as it promotes the usage of renewable energy and improves the energy efficiency in a plant. Narrower bandgap materials such as InGaAsSb TPV cell has been reported to achieve a promising performance for waste-heat application. However, the performance of InGaAsSb TPV cell is yet to be optimized. Hence, this research aims to optimize 0.496 eV InGaAsSb to achieve better cell efficiency using Silvaco software under 10002000 K blackbody temperature, which complies with the heat harvesting application. At 1223 K blackbody temperature InGaAsSb can potentially generate electricity with 10.82% efficiency $\left({{P_{out}} = 0.286{\text{W/c}}{{\mathrm{m}}^2}} \right)$. By optimizing the doping level and emitter thickness, it is capable to produce a maximum output power of 0.31 and 0.33 W/cm2, respectively. Thus, this study shall contribute to the development of narrow bandgap TPV device for waste heat recovery system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信