基于k均值聚类算法的医学图像质量分割与测量

Ahmed Mohamed Ali Karrar, Jun Sun
{"title":"基于k均值聚类算法的医学图像质量分割与测量","authors":"Ahmed Mohamed Ali Karrar, Jun Sun","doi":"10.11648/J.AJNNA.20190501.16","DOIUrl":null,"url":null,"abstract":"In this paper we have segmented an image by using a k-clustering algorithm, using the Gaussian Mixture Model cluster to generate the initial centroid. Many types of research have been done in the area of image segmentation using clustering especially medical images, these techniques help medical scientists in the diagnosis of diseases thereby to cure this diseases K-means clustering algorithm one of these techniques, it is an unsupervised algorithm and it is used to segment the interest area from the background. We used also partial contrast stretching to improve the quality of the original image. And the final segmented result is comparing with the k-means clustering algorithm and we can conclude that the proposed clustering algorithm has better segmentation. Finally, MSE and PSNR are checked and discovered that they have small and large value respective, which are the condition for good image segmentation quality. And comparison for MSE and PSNR are done for the proposed method and classical K-means algorithm and it is found that the proposed method has better performance result.","PeriodicalId":325288,"journal":{"name":"American Journal of Neural Networks and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Segmentation and Measurement of Medical Image Quality Using K-means Clustering Algorithm\",\"authors\":\"Ahmed Mohamed Ali Karrar, Jun Sun\",\"doi\":\"10.11648/J.AJNNA.20190501.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have segmented an image by using a k-clustering algorithm, using the Gaussian Mixture Model cluster to generate the initial centroid. Many types of research have been done in the area of image segmentation using clustering especially medical images, these techniques help medical scientists in the diagnosis of diseases thereby to cure this diseases K-means clustering algorithm one of these techniques, it is an unsupervised algorithm and it is used to segment the interest area from the background. We used also partial contrast stretching to improve the quality of the original image. And the final segmented result is comparing with the k-means clustering algorithm and we can conclude that the proposed clustering algorithm has better segmentation. Finally, MSE and PSNR are checked and discovered that they have small and large value respective, which are the condition for good image segmentation quality. And comparison for MSE and PSNR are done for the proposed method and classical K-means algorithm and it is found that the proposed method has better performance result.\",\"PeriodicalId\":325288,\"journal\":{\"name\":\"American Journal of Neural Networks and Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Neural Networks and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJNNA.20190501.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Neural Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJNNA.20190501.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文使用k聚类算法对图像进行分割,使用高斯混合模型聚类生成初始质心。聚类在图像分割领域已经做了很多研究,特别是医学图像,这些技术帮助医学科学家在疾病的诊断,从而治疗这种疾病K-means聚类算法是其中的一种技术,它是一种无监督算法,用于从背景中分割感兴趣的区域。我们还使用了部分对比度拉伸来提高原始图像的质量。最后将分割结果与k-means聚类算法进行比较,可以看出本文提出的聚类算法具有更好的分割效果。最后对MSE和PSNR进行检测,发现MSE和PSNR分别具有较小和较大的值,这是图像分割质量良好的条件。并将该方法与经典的K-means算法进行了MSE和PSNR的比较,发现该方法具有更好的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation and Measurement of Medical Image Quality Using K-means Clustering Algorithm
In this paper we have segmented an image by using a k-clustering algorithm, using the Gaussian Mixture Model cluster to generate the initial centroid. Many types of research have been done in the area of image segmentation using clustering especially medical images, these techniques help medical scientists in the diagnosis of diseases thereby to cure this diseases K-means clustering algorithm one of these techniques, it is an unsupervised algorithm and it is used to segment the interest area from the background. We used also partial contrast stretching to improve the quality of the original image. And the final segmented result is comparing with the k-means clustering algorithm and we can conclude that the proposed clustering algorithm has better segmentation. Finally, MSE and PSNR are checked and discovered that they have small and large value respective, which are the condition for good image segmentation quality. And comparison for MSE and PSNR are done for the proposed method and classical K-means algorithm and it is found that the proposed method has better performance result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信