GTL煤油和正丁醇在RCCI模式:燃烧和排放的研究

V. Soloiu, J. Moncada, R. Gaubert, Spencer Harp, M. Ilie, J. Wiley
{"title":"GTL煤油和正丁醇在RCCI模式:燃烧和排放的研究","authors":"V. Soloiu, J. Moncada, R. Gaubert, Spencer Harp, M. Ilie, J. Wiley","doi":"10.1115/ICEF2018-9585","DOIUrl":null,"url":null,"abstract":"High reactivity gas-to-liquid kerosene (GTL) was investigated with port fuel injection (PFI) of low reactivity n-butanol to conduct reactivity controlled compression ignition (RCCI). In the preliminary stage, the GTL was investigated in a constant volume combustion chamber, and the results indicated a narrower negative temperature coefficient (NTC) region than ultra-low sulfur diesel (ULSD#2). The engine research was conducted at 1500 RPM and various loads with early n-butanol PFI and dual DI pulses of GTL at 60 crank angle degrees (CAD) before top dead center (TDC) and at a timing close to TDC. Boost and PFI fractions (60% by mass n-butanol) were kept constant in order to analyze the fuel reactivity effect on combustion. Conventional diesel combustion (CDC) mode with a single injection and the same combustion phasing (CA50) was used as an emissions baseline for RCCI. RCCI increased ignition delay and combustion duration decreased compared to CDC. Results showed that in order to maintain CA50 for RCCI within 1 CAD, GTL mass required for the first DI pulse to be 15% lower than that of ULSD#2 at higher loads. Peak heat release rate decreased for GTL by 25% given the high volatility and low viscosity of GTL. In general, using GTL, NOx and soot levels were reduced across load points by up to 15% to 30%, respectively, compared to ULSD RCCI, while maintaining RCCI combustion efficiency at 93–97%. Meanwhile, reductions of 85% in soot and 90% in NOx were determined when using RCCI compared to CDC. The more favorable heat release placement of GTL led to increased thermal efficiency by 3% at higher load compared to ULSD#2. The higher volatility and increased reactivity for GTL achieved lower UHC and CO than ULSD#2 at lower load. The study concluded that GTL offered advantages when used with n-butanol for this RCCI fueling configuration.","PeriodicalId":441369,"journal":{"name":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GTL Kerosene and N-Butanol in RCCI Mode: Combustion and Emissions Investigation\",\"authors\":\"V. Soloiu, J. Moncada, R. Gaubert, Spencer Harp, M. Ilie, J. Wiley\",\"doi\":\"10.1115/ICEF2018-9585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High reactivity gas-to-liquid kerosene (GTL) was investigated with port fuel injection (PFI) of low reactivity n-butanol to conduct reactivity controlled compression ignition (RCCI). In the preliminary stage, the GTL was investigated in a constant volume combustion chamber, and the results indicated a narrower negative temperature coefficient (NTC) region than ultra-low sulfur diesel (ULSD#2). The engine research was conducted at 1500 RPM and various loads with early n-butanol PFI and dual DI pulses of GTL at 60 crank angle degrees (CAD) before top dead center (TDC) and at a timing close to TDC. Boost and PFI fractions (60% by mass n-butanol) were kept constant in order to analyze the fuel reactivity effect on combustion. Conventional diesel combustion (CDC) mode with a single injection and the same combustion phasing (CA50) was used as an emissions baseline for RCCI. RCCI increased ignition delay and combustion duration decreased compared to CDC. Results showed that in order to maintain CA50 for RCCI within 1 CAD, GTL mass required for the first DI pulse to be 15% lower than that of ULSD#2 at higher loads. Peak heat release rate decreased for GTL by 25% given the high volatility and low viscosity of GTL. In general, using GTL, NOx and soot levels were reduced across load points by up to 15% to 30%, respectively, compared to ULSD RCCI, while maintaining RCCI combustion efficiency at 93–97%. Meanwhile, reductions of 85% in soot and 90% in NOx were determined when using RCCI compared to CDC. The more favorable heat release placement of GTL led to increased thermal efficiency by 3% at higher load compared to ULSD#2. The higher volatility and increased reactivity for GTL achieved lower UHC and CO than ULSD#2 at lower load. The study concluded that GTL offered advantages when used with n-butanol for this RCCI fueling configuration.\",\"PeriodicalId\":441369,\"journal\":{\"name\":\"Volume 1: Large Bore Engines; Fuels; Advanced Combustion\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Large Bore Engines; Fuels; Advanced Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICEF2018-9585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICEF2018-9585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用低反应性正丁醇进气道喷射(PFI)对高反应性气液煤油(GTL)进行反应性控制压缩点火(RCCI)研究。在初始阶段,在定容燃烧室中对GTL进行了研究,结果表明,与超低硫柴油(ULSD#2)相比,GTL的负温度系数(NTC)区域更窄。发动机在1500转/分和各种负载下进行了研究,使用了早期正丁醇PFI和GTL双DI脉冲,在曲柄角度(CAD)在上止点(TDC)前60和接近TDC的时间。为了分析燃料反应性对燃烧的影响,增压和PFI分数(60%质量正丁醇)保持不变。RCCI的排放基准是采用单次喷射和相同燃烧阶段(CA50)的传统柴油燃烧(CDC)模式。与CDC相比,RCCI增加了点火延迟和燃烧持续时间。结果表明,为了使RCCI的CA50保持在1 CAD以内,在较高负载下,第一次DI脉冲所需的GTL质量比ULSD#2低15%。由于GTL的高挥发性和低粘度,GTL的峰值放热率降低了25%。一般来说,与ULSD RCCI相比,使用GTL,氮氧化物和烟尘水平在负载点上分别降低了15%至30%,同时保持了93-97%的RCCI燃烧效率。同时,与CDC相比,使用RCCI可减少85%的烟尘和90%的氮氧化物。与ULSD#2相比,GTL更有利的放热位置在更高负载下使热效率提高了3%。在较低负荷下,GTL的挥发性和反应性较高,其UHC和CO比ULSD#2低。研究得出结论,GTL与正丁醇一起用于RCCI燃料配置时具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GTL Kerosene and N-Butanol in RCCI Mode: Combustion and Emissions Investigation
High reactivity gas-to-liquid kerosene (GTL) was investigated with port fuel injection (PFI) of low reactivity n-butanol to conduct reactivity controlled compression ignition (RCCI). In the preliminary stage, the GTL was investigated in a constant volume combustion chamber, and the results indicated a narrower negative temperature coefficient (NTC) region than ultra-low sulfur diesel (ULSD#2). The engine research was conducted at 1500 RPM and various loads with early n-butanol PFI and dual DI pulses of GTL at 60 crank angle degrees (CAD) before top dead center (TDC) and at a timing close to TDC. Boost and PFI fractions (60% by mass n-butanol) were kept constant in order to analyze the fuel reactivity effect on combustion. Conventional diesel combustion (CDC) mode with a single injection and the same combustion phasing (CA50) was used as an emissions baseline for RCCI. RCCI increased ignition delay and combustion duration decreased compared to CDC. Results showed that in order to maintain CA50 for RCCI within 1 CAD, GTL mass required for the first DI pulse to be 15% lower than that of ULSD#2 at higher loads. Peak heat release rate decreased for GTL by 25% given the high volatility and low viscosity of GTL. In general, using GTL, NOx and soot levels were reduced across load points by up to 15% to 30%, respectively, compared to ULSD RCCI, while maintaining RCCI combustion efficiency at 93–97%. Meanwhile, reductions of 85% in soot and 90% in NOx were determined when using RCCI compared to CDC. The more favorable heat release placement of GTL led to increased thermal efficiency by 3% at higher load compared to ULSD#2. The higher volatility and increased reactivity for GTL achieved lower UHC and CO than ULSD#2 at lower load. The study concluded that GTL offered advantages when used with n-butanol for this RCCI fueling configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信