一种基于动态时间阈值的统计威胁检测方法

Jianwei Tian, Hong Qiao, Xi Li, Zheng Tian
{"title":"一种基于动态时间阈值的统计威胁检测方法","authors":"Jianwei Tian, Hong Qiao, Xi Li, Zheng Tian","doi":"10.1109/COMPCOMM.2016.7924872","DOIUrl":null,"url":null,"abstract":"With the rapid development of Web technology, security attacks are growing day by day. It is difficult but important to detect these threats, especially the statistical type like brute force. This paper proposes a statistical threat detection method based on dynamic time threshold. Firstly, the study constructs the framework of collecting and preprocessing the massive log. Then threat detecting method with dynamic time threshold based on MapReduce framework is presented.","PeriodicalId":210833,"journal":{"name":"2016 2nd IEEE International Conference on Computer and Communications (ICCC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A statistical threat detection method based on dynamic time threshold\",\"authors\":\"Jianwei Tian, Hong Qiao, Xi Li, Zheng Tian\",\"doi\":\"10.1109/COMPCOMM.2016.7924872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of Web technology, security attacks are growing day by day. It is difficult but important to detect these threats, especially the statistical type like brute force. This paper proposes a statistical threat detection method based on dynamic time threshold. Firstly, the study constructs the framework of collecting and preprocessing the massive log. Then threat detecting method with dynamic time threshold based on MapReduce framework is presented.\",\"PeriodicalId\":210833,\"journal\":{\"name\":\"2016 2nd IEEE International Conference on Computer and Communications (ICCC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd IEEE International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPCOMM.2016.7924872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd IEEE International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPCOMM.2016.7924872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着Web技术的飞速发展,安全攻击日益增多。检测这些威胁很困难,但很重要,尤其是像暴力破解这样的统计类型。提出了一种基于动态时间阈值的统计威胁检测方法。首先,构建了海量日志采集与预处理框架。然后提出了基于MapReduce框架的动态时间阈值威胁检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A statistical threat detection method based on dynamic time threshold
With the rapid development of Web technology, security attacks are growing day by day. It is difficult but important to detect these threats, especially the statistical type like brute force. This paper proposes a statistical threat detection method based on dynamic time threshold. Firstly, the study constructs the framework of collecting and preprocessing the massive log. Then threat detecting method with dynamic time threshold based on MapReduce framework is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信