基于神经网络和ANFIS的自适应MPC自动驾驶汽车路径跟踪

Yassine Kebbati, N. A. Oufroukh, V. Vigneron, D. Ichalal
{"title":"基于神经网络和ANFIS的自适应MPC自动驾驶汽车路径跟踪","authors":"Yassine Kebbati, N. A. Oufroukh, V. Vigneron, D. Ichalal","doi":"10.1109/ICNSC52481.2021.9702227","DOIUrl":null,"url":null,"abstract":"Self-driving cars operate in constantly changing environments and are exposed to a variety of uncertainties and disturbances. These factors render classical controllers ineffective, especially for the lateral control in such vehicles. Therefore, an adaptive MPC controller is designed in this paper for the path tracking task, the developed controller is tuned by an improved particle swarm optimization algorithm. Furthermore, online parameter adaption is performed using Neural Networks and ANFIS. The designed controller showed promising results and adaptation capability against the standard MPC in a triple lane change scenario and a general trajectory test.","PeriodicalId":129062,"journal":{"name":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neural Network and ANFIS based auto-adaptive MPC for path tracking in autonomous vehicles\",\"authors\":\"Yassine Kebbati, N. A. Oufroukh, V. Vigneron, D. Ichalal\",\"doi\":\"10.1109/ICNSC52481.2021.9702227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-driving cars operate in constantly changing environments and are exposed to a variety of uncertainties and disturbances. These factors render classical controllers ineffective, especially for the lateral control in such vehicles. Therefore, an adaptive MPC controller is designed in this paper for the path tracking task, the developed controller is tuned by an improved particle swarm optimization algorithm. Furthermore, online parameter adaption is performed using Neural Networks and ANFIS. The designed controller showed promising results and adaptation capability against the standard MPC in a triple lane change scenario and a general trajectory test.\",\"PeriodicalId\":129062,\"journal\":{\"name\":\"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC52481.2021.9702227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC52481.2021.9702227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自动驾驶汽车在不断变化的环境中运行,面临各种不确定性和干扰。这些因素使得传统的控制器失效,特别是对于此类车辆的横向控制。因此,本文针对路径跟踪任务设计了自适应MPC控制器,该控制器采用改进的粒子群优化算法进行调谐。利用神经网络和ANFIS进行在线参数自适应。所设计的控制器在三变道场景和一般轨迹测试中对标准MPC具有良好的自适应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network and ANFIS based auto-adaptive MPC for path tracking in autonomous vehicles
Self-driving cars operate in constantly changing environments and are exposed to a variety of uncertainties and disturbances. These factors render classical controllers ineffective, especially for the lateral control in such vehicles. Therefore, an adaptive MPC controller is designed in this paper for the path tracking task, the developed controller is tuned by an improved particle swarm optimization algorithm. Furthermore, online parameter adaption is performed using Neural Networks and ANFIS. The designed controller showed promising results and adaptation capability against the standard MPC in a triple lane change scenario and a general trajectory test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信