{"title":"通过递归最小分割双分区将任务分配到超立方体上","authors":"F. Erçal, J. Ramanujam, P. Sadayappan","doi":"10.1145/62297.62323","DOIUrl":null,"url":null,"abstract":"An efficient recursive task allocation scheme, based on the Kernighan-Lin mincut bisection heuristic, is proposed for the effective mapping of tasks of a parallel program onto a hypercube parallel computer. It is evaluated by comparison with an adaptive, scaled simulated annealing method. The recursive allocation scheme is shown to be effective on a number of large test task graphs - its solution quality is nearly as good as that produced by simulated annealing, and its computation time is several orders of magnitude less.","PeriodicalId":299435,"journal":{"name":"Conference on Hypercube Concurrent Computers and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"154","resultStr":"{\"title\":\"Task allocation onto a hypercube by recursive mincut bipartitioning\",\"authors\":\"F. Erçal, J. Ramanujam, P. Sadayappan\",\"doi\":\"10.1145/62297.62323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient recursive task allocation scheme, based on the Kernighan-Lin mincut bisection heuristic, is proposed for the effective mapping of tasks of a parallel program onto a hypercube parallel computer. It is evaluated by comparison with an adaptive, scaled simulated annealing method. The recursive allocation scheme is shown to be effective on a number of large test task graphs - its solution quality is nearly as good as that produced by simulated annealing, and its computation time is several orders of magnitude less.\",\"PeriodicalId\":299435,\"journal\":{\"name\":\"Conference on Hypercube Concurrent Computers and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"154\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Hypercube Concurrent Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/62297.62323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Hypercube Concurrent Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/62297.62323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Task allocation onto a hypercube by recursive mincut bipartitioning
An efficient recursive task allocation scheme, based on the Kernighan-Lin mincut bisection heuristic, is proposed for the effective mapping of tasks of a parallel program onto a hypercube parallel computer. It is evaluated by comparison with an adaptive, scaled simulated annealing method. The recursive allocation scheme is shown to be effective on a number of large test task graphs - its solution quality is nearly as good as that produced by simulated annealing, and its computation time is several orders of magnitude less.