采用深度学习审计中的文本数据分析

Ting Sun, M. Vasarhelyi
{"title":"采用深度学习审计中的文本数据分析","authors":"Ting Sun, M. Vasarhelyi","doi":"10.4192/1577-8517-V18_3","DOIUrl":null,"url":null,"abstract":"While the massive volume of text documents from multiple sources inside and outside of the company provides more information for auditors, the lack of efficient and effective technology solutions hampers the full use of text data. Powered by the emerging data analytics technology of deep learning, the value of the text can be better explored to deliver a higher quality of audit evidence and more relevant business insights. This research analyzes the usefulness of the information provided by various textual data in auditing and introduces deep learning, an evolving Artificial Intelligence approach. Furthermore, it provides a guide for auditors to implement deep learning techniques with pre-developed tools and open-source libraries.","PeriodicalId":404481,"journal":{"name":"The International Journal of Digital Accounting Research","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Embracing Textual Data Analytics in Auditing with Deep Learning\",\"authors\":\"Ting Sun, M. Vasarhelyi\",\"doi\":\"10.4192/1577-8517-V18_3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the massive volume of text documents from multiple sources inside and outside of the company provides more information for auditors, the lack of efficient and effective technology solutions hampers the full use of text data. Powered by the emerging data analytics technology of deep learning, the value of the text can be better explored to deliver a higher quality of audit evidence and more relevant business insights. This research analyzes the usefulness of the information provided by various textual data in auditing and introduces deep learning, an evolving Artificial Intelligence approach. Furthermore, it provides a guide for auditors to implement deep learning techniques with pre-developed tools and open-source libraries.\",\"PeriodicalId\":404481,\"journal\":{\"name\":\"The International Journal of Digital Accounting Research\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Digital Accounting Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4192/1577-8517-V18_3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Digital Accounting Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4192/1577-8517-V18_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

虽然来自公司内外多个来源的大量文本文档为审计员提供了更多信息,但缺乏高效和有效的技术解决方案阻碍了文本数据的充分利用。在新兴的深度学习数据分析技术的支持下,可以更好地探索文本的价值,以提供更高质量的审计证据和更相关的业务见解。本研究分析了各种文本数据在审计中提供的信息的有用性,并介绍了深度学习,一种不断发展的人工智能方法。此外,它还为审计员提供了使用预开发工具和开源库实现深度学习技术的指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embracing Textual Data Analytics in Auditing with Deep Learning
While the massive volume of text documents from multiple sources inside and outside of the company provides more information for auditors, the lack of efficient and effective technology solutions hampers the full use of text data. Powered by the emerging data analytics technology of deep learning, the value of the text can be better explored to deliver a higher quality of audit evidence and more relevant business insights. This research analyzes the usefulness of the information provided by various textual data in auditing and introduces deep learning, an evolving Artificial Intelligence approach. Furthermore, it provides a guide for auditors to implement deep learning techniques with pre-developed tools and open-source libraries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信