一个随机的两物种竞争模型:非平衡波动和稳定性

G. Samanta
{"title":"一个随机的两物种竞争模型:非平衡波动和稳定性","authors":"G. Samanta","doi":"10.1155/2011/489386","DOIUrl":null,"url":null,"abstract":"The object of this paper is to study the stability behaviours of the deterministic and stochastic versions of a two-species symmetric competition model. The logistic parameters of the competitive species are perturbed by colored noises or Ornstein-Uhlenbeck processes due to random environment. The Fokker-Planck equation has been used to obtain probability density functions. Here, we have also discussed the relationship between stability behaviours of this model in a deterministic environment and the corresponding model in a stochastic environment.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Stochastic Two Species Competition Model: Nonequilibrium Fluctuation and Stability\",\"authors\":\"G. Samanta\",\"doi\":\"10.1155/2011/489386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of this paper is to study the stability behaviours of the deterministic and stochastic versions of a two-species symmetric competition model. The logistic parameters of the competitive species are perturbed by colored noises or Ornstein-Uhlenbeck processes due to random environment. The Fokker-Planck equation has been used to obtain probability density functions. Here, we have also discussed the relationship between stability behaviours of this model in a deterministic environment and the corresponding model in a stochastic environment.\",\"PeriodicalId\":196477,\"journal\":{\"name\":\"International Journal of Stochastic Analysis\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/489386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/489386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文的目的是研究两种对称竞争模型的确定性版本和随机版本的稳定性行为。由于环境随机,竞争物种的逻辑参数会受到有色噪声或Ornstein-Uhlenbeck过程的干扰。福克-普朗克方程已被用来获得概率密度函数。本文还讨论了该模型在确定性环境下的稳定性行为与随机环境下的稳定性行为的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Stochastic Two Species Competition Model: Nonequilibrium Fluctuation and Stability
The object of this paper is to study the stability behaviours of the deterministic and stochastic versions of a two-species symmetric competition model. The logistic parameters of the competitive species are perturbed by colored noises or Ornstein-Uhlenbeck processes due to random environment. The Fokker-Planck equation has been used to obtain probability density functions. Here, we have also discussed the relationship between stability behaviours of this model in a deterministic environment and the corresponding model in a stochastic environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信