{"title":"阻塞随机抽样与分布估计算法","authors":"Roberto Santana, H. Mühlenbein","doi":"10.1109/CEC.2002.1004446","DOIUrl":null,"url":null,"abstract":"The Boltzmann distribution is a good candidate for a search distribution for optimization problems. We compare two methods to approximate the Boltzmann distribution - Estimation of Distribution Algorithms (EDA) and Markov Chain Monte Carlo methods (MCMC). It turns out that in the space of binary functions even blocked MCMC methods outperform EDA on a small class of problems only. In these cases a temperature of T = 0 performed best.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Blocked stochastic sampling versus Estimation of Distribution Algorithms\",\"authors\":\"Roberto Santana, H. Mühlenbein\",\"doi\":\"10.1109/CEC.2002.1004446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Boltzmann distribution is a good candidate for a search distribution for optimization problems. We compare two methods to approximate the Boltzmann distribution - Estimation of Distribution Algorithms (EDA) and Markov Chain Monte Carlo methods (MCMC). It turns out that in the space of binary functions even blocked MCMC methods outperform EDA on a small class of problems only. In these cases a temperature of T = 0 performed best.\",\"PeriodicalId\":184547,\"journal\":{\"name\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2002.1004446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1004446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blocked stochastic sampling versus Estimation of Distribution Algorithms
The Boltzmann distribution is a good candidate for a search distribution for optimization problems. We compare two methods to approximate the Boltzmann distribution - Estimation of Distribution Algorithms (EDA) and Markov Chain Monte Carlo methods (MCMC). It turns out that in the space of binary functions even blocked MCMC methods outperform EDA on a small class of problems only. In these cases a temperature of T = 0 performed best.