凸点集上增弦图的构造

K. Mastakas, A. Symvonis
{"title":"凸点集上增弦图的构造","authors":"K. Mastakas, A. Symvonis","doi":"10.1109/IISA.2015.7388028","DOIUrl":null,"url":null,"abstract":"A geometric path from s to t is increasing-chord, if while traversing it from s to t the distance to the following (resp. from the preceding) points of the path decreases (resp. increases). A geometric graph is increasing-chord if each two distinct vertices are connected with an increasing-chord path. We show that given a convex point set P in the plane we can construct an increasing-chord graph consisting of P, at most one Steiner point and at most 4|P| - 8 edges.","PeriodicalId":433872,"journal":{"name":"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the construction of increasing-chord graphs on convex point sets\",\"authors\":\"K. Mastakas, A. Symvonis\",\"doi\":\"10.1109/IISA.2015.7388028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A geometric path from s to t is increasing-chord, if while traversing it from s to t the distance to the following (resp. from the preceding) points of the path decreases (resp. increases). A geometric graph is increasing-chord if each two distinct vertices are connected with an increasing-chord path. We show that given a convex point set P in the plane we can construct an increasing-chord graph consisting of P, at most one Steiner point and at most 4|P| - 8 edges.\",\"PeriodicalId\":433872,\"journal\":{\"name\":\"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2015.7388028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2015.7388028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

从s到t的几何路径是递增弦,如果在从s到t的过程中,到下面的距离(p。从前面)点的路径减少(响应。增加)。一个几何图形是递增和弦,如果每两个不同的顶点与递增和弦路径相连。我们证明了平面上给定一个凸点集P,我们可以构造一个由P、最多一个斯坦纳点和最多4|P| - 8条边组成的递增弦图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the construction of increasing-chord graphs on convex point sets
A geometric path from s to t is increasing-chord, if while traversing it from s to t the distance to the following (resp. from the preceding) points of the path decreases (resp. increases). A geometric graph is increasing-chord if each two distinct vertices are connected with an increasing-chord path. We show that given a convex point set P in the plane we can construct an increasing-chord graph consisting of P, at most one Steiner point and at most 4|P| - 8 edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信