基于遗传算法的大规模网格环境下移动机器人全局路径规划

Maram Alajlan, A. Koubâa, I. Châari, Hachemi Bennaceur, Adel Ammar
{"title":"基于遗传算法的大规模网格环境下移动机器人全局路径规划","authors":"Maram Alajlan, A. Koubâa, I. Châari, Hachemi Bennaceur, Adel Ammar","doi":"10.1109/ICBR.2013.6729271","DOIUrl":null,"url":null,"abstract":"Global path planning is considered as a fundamental problem for mobile robots. In this paper, we investigate the capabilities of genetic algorithms (GA) for solving the global path planning problem in large-scale grid maps. First, we propose a GA approach for efficiently finding an (or near) optimal path in the grid map. We carefully designed GA operators to optimize the search process. We also conduct a comprehensive statistical evaluation of the proposed GA approach in terms of solution quality, and we compare it against the well-known A* algorithm as a reference. Extensive simulation results show that GA is able to find the optimal paths in large environments equally to A* in almost all the simulated cases.","PeriodicalId":269516,"journal":{"name":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Global path planning for mobile robots in large-scale grid environments using genetic algorithms\",\"authors\":\"Maram Alajlan, A. Koubâa, I. Châari, Hachemi Bennaceur, Adel Ammar\",\"doi\":\"10.1109/ICBR.2013.6729271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global path planning is considered as a fundamental problem for mobile robots. In this paper, we investigate the capabilities of genetic algorithms (GA) for solving the global path planning problem in large-scale grid maps. First, we propose a GA approach for efficiently finding an (or near) optimal path in the grid map. We carefully designed GA operators to optimize the search process. We also conduct a comprehensive statistical evaluation of the proposed GA approach in terms of solution quality, and we compare it against the well-known A* algorithm as a reference. Extensive simulation results show that GA is able to find the optimal paths in large environments equally to A* in almost all the simulated cases.\",\"PeriodicalId\":269516,\"journal\":{\"name\":\"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBR.2013.6729271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBR.2013.6729271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

全局路径规划是移动机器人的一个基本问题。在本文中,我们研究了遗传算法(GA)解决大尺度网格地图中全局路径规划问题的能力。首先,我们提出了一种遗传算法来有效地在网格地图中找到(或接近)最优路径。我们精心设计了遗传算子来优化搜索过程。我们还对所提出的GA方法在解质量方面进行了全面的统计评估,并将其与著名的a *算法进行了比较,作为参考。大量的仿真结果表明,在几乎所有的模拟情况下,GA都能找到与A*相同的大环境下的最优路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global path planning for mobile robots in large-scale grid environments using genetic algorithms
Global path planning is considered as a fundamental problem for mobile robots. In this paper, we investigate the capabilities of genetic algorithms (GA) for solving the global path planning problem in large-scale grid maps. First, we propose a GA approach for efficiently finding an (or near) optimal path in the grid map. We carefully designed GA operators to optimize the search process. We also conduct a comprehensive statistical evaluation of the proposed GA approach in terms of solution quality, and we compare it against the well-known A* algorithm as a reference. Extensive simulation results show that GA is able to find the optimal paths in large environments equally to A* in almost all the simulated cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信