Maram Alajlan, A. Koubâa, I. Châari, Hachemi Bennaceur, Adel Ammar
{"title":"基于遗传算法的大规模网格环境下移动机器人全局路径规划","authors":"Maram Alajlan, A. Koubâa, I. Châari, Hachemi Bennaceur, Adel Ammar","doi":"10.1109/ICBR.2013.6729271","DOIUrl":null,"url":null,"abstract":"Global path planning is considered as a fundamental problem for mobile robots. In this paper, we investigate the capabilities of genetic algorithms (GA) for solving the global path planning problem in large-scale grid maps. First, we propose a GA approach for efficiently finding an (or near) optimal path in the grid map. We carefully designed GA operators to optimize the search process. We also conduct a comprehensive statistical evaluation of the proposed GA approach in terms of solution quality, and we compare it against the well-known A* algorithm as a reference. Extensive simulation results show that GA is able to find the optimal paths in large environments equally to A* in almost all the simulated cases.","PeriodicalId":269516,"journal":{"name":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Global path planning for mobile robots in large-scale grid environments using genetic algorithms\",\"authors\":\"Maram Alajlan, A. Koubâa, I. Châari, Hachemi Bennaceur, Adel Ammar\",\"doi\":\"10.1109/ICBR.2013.6729271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global path planning is considered as a fundamental problem for mobile robots. In this paper, we investigate the capabilities of genetic algorithms (GA) for solving the global path planning problem in large-scale grid maps. First, we propose a GA approach for efficiently finding an (or near) optimal path in the grid map. We carefully designed GA operators to optimize the search process. We also conduct a comprehensive statistical evaluation of the proposed GA approach in terms of solution quality, and we compare it against the well-known A* algorithm as a reference. Extensive simulation results show that GA is able to find the optimal paths in large environments equally to A* in almost all the simulated cases.\",\"PeriodicalId\":269516,\"journal\":{\"name\":\"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBR.2013.6729271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBR.2013.6729271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global path planning for mobile robots in large-scale grid environments using genetic algorithms
Global path planning is considered as a fundamental problem for mobile robots. In this paper, we investigate the capabilities of genetic algorithms (GA) for solving the global path planning problem in large-scale grid maps. First, we propose a GA approach for efficiently finding an (or near) optimal path in the grid map. We carefully designed GA operators to optimize the search process. We also conduct a comprehensive statistical evaluation of the proposed GA approach in terms of solution quality, and we compare it against the well-known A* algorithm as a reference. Extensive simulation results show that GA is able to find the optimal paths in large environments equally to A* in almost all the simulated cases.