基于混合外观的人脑疾病识别

Leyla Zhuhadar, Gopi Chand Nutakki
{"title":"基于混合外观的人脑疾病识别","authors":"Leyla Zhuhadar, Gopi Chand Nutakki","doi":"10.1109/IV.2012.99","DOIUrl":null,"url":null,"abstract":"The magnetic resonance imaging (MRI) is a diagnostic and treatment evaluation tool which is very widely used in various areas of medicine. MRI images provide very high quality images of the brain tissue and so can be used to study the brain conditions. This research paper proposes a productive technique to classify brain MRI images. Examining the MRI brain images manually is not only slow but is also error prone. In order to both speed up the process and maintain the quality of the classification we need a very high-quality classification system. In this research work, advanced classification techniques based on the well known SIFT and Gabor features are applied on brain images. From our analysis we observed that a hybrid feature derived with SIFT and Gabor features yielded a higher accuracy than Gabor features alone.","PeriodicalId":264951,"journal":{"name":"2012 16th International Conference on Information Visualisation","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hybrid Appearance Based Disease Recognition of Human Brains\",\"authors\":\"Leyla Zhuhadar, Gopi Chand Nutakki\",\"doi\":\"10.1109/IV.2012.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The magnetic resonance imaging (MRI) is a diagnostic and treatment evaluation tool which is very widely used in various areas of medicine. MRI images provide very high quality images of the brain tissue and so can be used to study the brain conditions. This research paper proposes a productive technique to classify brain MRI images. Examining the MRI brain images manually is not only slow but is also error prone. In order to both speed up the process and maintain the quality of the classification we need a very high-quality classification system. In this research work, advanced classification techniques based on the well known SIFT and Gabor features are applied on brain images. From our analysis we observed that a hybrid feature derived with SIFT and Gabor features yielded a higher accuracy than Gabor features alone.\",\"PeriodicalId\":264951,\"journal\":{\"name\":\"2012 16th International Conference on Information Visualisation\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 16th International Conference on Information Visualisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV.2012.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Conference on Information Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2012.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

磁共振成像(MRI)是一种广泛应用于医学各个领域的诊断和治疗评价工具。核磁共振成像提供了非常高质量的脑组织图像,因此可以用来研究大脑状况。本文提出了一种高效的脑MRI图像分类技术。人工检查MRI脑图像不仅速度慢,而且容易出错。为了加快分类速度和保持分类质量,我们需要一个高质量的分类系统。在本研究中,将基于SIFT和Gabor特征的高级分类技术应用于脑图像。从我们的分析中,我们观察到SIFT和Gabor特征的混合特征比单独的Gabor特征产生更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Appearance Based Disease Recognition of Human Brains
The magnetic resonance imaging (MRI) is a diagnostic and treatment evaluation tool which is very widely used in various areas of medicine. MRI images provide very high quality images of the brain tissue and so can be used to study the brain conditions. This research paper proposes a productive technique to classify brain MRI images. Examining the MRI brain images manually is not only slow but is also error prone. In order to both speed up the process and maintain the quality of the classification we need a very high-quality classification system. In this research work, advanced classification techniques based on the well known SIFT and Gabor features are applied on brain images. From our analysis we observed that a hybrid feature derived with SIFT and Gabor features yielded a higher accuracy than Gabor features alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信