基于fpga的流结构粒子滤波实时目标跟踪

Akane Tahara, Yoshiki Hayashida, Theint Theint Thu, Yuichiro Shibata, K. Oguri
{"title":"基于fpga的流结构粒子滤波实时目标跟踪","authors":"Akane Tahara, Yoshiki Hayashida, Theint Theint Thu, Yuichiro Shibata, K. Oguri","doi":"10.1109/CANDAR.2016.0079","DOIUrl":null,"url":null,"abstract":"This paper deals with the real-time FPGA implementation of the posterior system state estimation in dynamic state-space models using a particle filter. The system is constructed by parallel resampling (FO-resampling) algorithm on a stream-based architecture. In particular, the system consists of three steps: prediction, likelihood calculation and resampling. Since the resampling is accomplished in a synchronized area, our approach enhances the object tracking system especially efficiency and performance. The result shows that the amount of FPGA resource utilizes for the simulation of red-color soccer ball tracking compared with the available usage. Moreover, we evaluate the tracker detection rate and the accuracy of object tracking with the calculation of average and maximum tracking errors.","PeriodicalId":322499,"journal":{"name":"2016 Fourth International Symposium on Computing and Networking (CANDAR)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"FPGA-based Real-Time Object Tracking Using a Particle Filter with Stream Architecture\",\"authors\":\"Akane Tahara, Yoshiki Hayashida, Theint Theint Thu, Yuichiro Shibata, K. Oguri\",\"doi\":\"10.1109/CANDAR.2016.0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the real-time FPGA implementation of the posterior system state estimation in dynamic state-space models using a particle filter. The system is constructed by parallel resampling (FO-resampling) algorithm on a stream-based architecture. In particular, the system consists of three steps: prediction, likelihood calculation and resampling. Since the resampling is accomplished in a synchronized area, our approach enhances the object tracking system especially efficiency and performance. The result shows that the amount of FPGA resource utilizes for the simulation of red-color soccer ball tracking compared with the available usage. Moreover, we evaluate the tracker detection rate and the accuracy of object tracking with the calculation of average and maximum tracking errors.\",\"PeriodicalId\":322499,\"journal\":{\"name\":\"2016 Fourth International Symposium on Computing and Networking (CANDAR)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Fourth International Symposium on Computing and Networking (CANDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CANDAR.2016.0079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Symposium on Computing and Networking (CANDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDAR.2016.0079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了在动态状态空间模型中使用粒子滤波后验系统状态估计的实时FPGA实现。系统采用基于流架构的并行重采样(fo -重采样)算法构建。具体来说,该系统包括三个步骤:预测、似然计算和重采样。由于重采样是在一个同步区域完成的,我们的方法提高了目标跟踪系统的效率和性能。结果表明,与可用的资源相比,用于红色足球跟踪仿真的FPGA资源利用率较高。此外,我们通过计算平均和最大跟踪误差来评估跟踪器的检测率和目标跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA-based Real-Time Object Tracking Using a Particle Filter with Stream Architecture
This paper deals with the real-time FPGA implementation of the posterior system state estimation in dynamic state-space models using a particle filter. The system is constructed by parallel resampling (FO-resampling) algorithm on a stream-based architecture. In particular, the system consists of three steps: prediction, likelihood calculation and resampling. Since the resampling is accomplished in a synchronized area, our approach enhances the object tracking system especially efficiency and performance. The result shows that the amount of FPGA resource utilizes for the simulation of red-color soccer ball tracking compared with the available usage. Moreover, we evaluate the tracker detection rate and the accuracy of object tracking with the calculation of average and maximum tracking errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信