{"title":"多核计算机体系结构的显式Volterra积分方程求解器的混合MPI/OpenMP并行化","authors":"A. Al-Jarro, H. Bağcı","doi":"10.1109/CEM.2011.6047345","DOIUrl":null,"url":null,"abstract":"A hybrid MPI/OpenMP scheme for efficiently parallelizing the explicit marching-on-in-time (MOT)-based solution of the time-domain volume (Volterra) integral equation (TD-VIE) is presented. The proposed scheme equally distributes tested field values and operations pertinent to the computation of tested fields among the nodes using the MPI standard; while the source field values are stored in all nodes. Within each node, OpenMP standard is used to further accelerate the computation of the tested fields. Numerical results demonstrate that the proposed parallelization scheme scales well for problems involving three million or more spatial discretization elements.","PeriodicalId":169588,"journal":{"name":"CEM'11 Computational Electromagnetics International Workshop","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid MPI/OpenMP parallelization of the explicit Volterra integral equation solver for multi-core computer architectures\",\"authors\":\"A. Al-Jarro, H. Bağcı\",\"doi\":\"10.1109/CEM.2011.6047345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid MPI/OpenMP scheme for efficiently parallelizing the explicit marching-on-in-time (MOT)-based solution of the time-domain volume (Volterra) integral equation (TD-VIE) is presented. The proposed scheme equally distributes tested field values and operations pertinent to the computation of tested fields among the nodes using the MPI standard; while the source field values are stored in all nodes. Within each node, OpenMP standard is used to further accelerate the computation of the tested fields. Numerical results demonstrate that the proposed parallelization scheme scales well for problems involving three million or more spatial discretization elements.\",\"PeriodicalId\":169588,\"journal\":{\"name\":\"CEM'11 Computational Electromagnetics International Workshop\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEM'11 Computational Electromagnetics International Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEM.2011.6047345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEM'11 Computational Electromagnetics International Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEM.2011.6047345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid MPI/OpenMP parallelization of the explicit Volterra integral equation solver for multi-core computer architectures
A hybrid MPI/OpenMP scheme for efficiently parallelizing the explicit marching-on-in-time (MOT)-based solution of the time-domain volume (Volterra) integral equation (TD-VIE) is presented. The proposed scheme equally distributes tested field values and operations pertinent to the computation of tested fields among the nodes using the MPI standard; while the source field values are stored in all nodes. Within each node, OpenMP standard is used to further accelerate the computation of the tested fields. Numerical results demonstrate that the proposed parallelization scheme scales well for problems involving three million or more spatial discretization elements.