利用站级蓄能回收轨道车辆制动能量

E. Schaefer, Bart Homan, Gerwin Hoogsteen, J. Hurink, R. V. Leeuwen
{"title":"利用站级蓄能回收轨道车辆制动能量","authors":"E. Schaefer, Bart Homan, Gerwin Hoogsteen, J. Hurink, R. V. Leeuwen","doi":"10.1109/ISGT-Europe54678.2022.9960571","DOIUrl":null,"url":null,"abstract":"This paper investigates the effect of adding energy storage to a metro DC microgrid in order to recuperate otherwise dissipated energy produced through regenerative braking. For this, a power load profile is constructed for a metro station using existing measured railcar data, which is then used to derive the requirements for storing regenerative braking energy. It is found that introducing a storage can lead to an almost complete recuperation of otherwise dissipated energy. The derived requirements for the storage are then used to investigate a selection of possible scenarios more in depth. These scenarios include both smart controlled and uncontrolled scenarios, and with the usage of an ideal storage device as well as a (non-ideal) flywheel. Simulation results confirm that all braking energy can be recuperated through the addition of energy storage to the microgrid.","PeriodicalId":311595,"journal":{"name":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recuperation of railcar braking energy using energy storage at station level\",\"authors\":\"E. Schaefer, Bart Homan, Gerwin Hoogsteen, J. Hurink, R. V. Leeuwen\",\"doi\":\"10.1109/ISGT-Europe54678.2022.9960571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the effect of adding energy storage to a metro DC microgrid in order to recuperate otherwise dissipated energy produced through regenerative braking. For this, a power load profile is constructed for a metro station using existing measured railcar data, which is then used to derive the requirements for storing regenerative braking energy. It is found that introducing a storage can lead to an almost complete recuperation of otherwise dissipated energy. The derived requirements for the storage are then used to investigate a selection of possible scenarios more in depth. These scenarios include both smart controlled and uncontrolled scenarios, and with the usage of an ideal storage device as well as a (non-ideal) flywheel. Simulation results confirm that all braking energy can be recuperated through the addition of energy storage to the microgrid.\",\"PeriodicalId\":311595,\"journal\":{\"name\":\"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-Europe54678.2022.9960571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Europe54678.2022.9960571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在地铁直流微电网中增加储能的效果,以恢复通过再生制动产生的其他耗散能量。为此,利用现有的实测轨道车辆数据构建了地铁车站的电力负荷分布图,然后使用该数据推导出存储再生制动能量的要求。研究发现,引入存储可以使原本耗散的能量几乎完全恢复。然后使用导出的存储需求来更深入地研究可能的场景选择。这些场景包括智能控制和非控制场景,并使用理想的存储设备以及(非理想的)飞轮。仿真结果证实,所有制动能量都可以通过在微电网中增加储能来回收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recuperation of railcar braking energy using energy storage at station level
This paper investigates the effect of adding energy storage to a metro DC microgrid in order to recuperate otherwise dissipated energy produced through regenerative braking. For this, a power load profile is constructed for a metro station using existing measured railcar data, which is then used to derive the requirements for storing regenerative braking energy. It is found that introducing a storage can lead to an almost complete recuperation of otherwise dissipated energy. The derived requirements for the storage are then used to investigate a selection of possible scenarios more in depth. These scenarios include both smart controlled and uncontrolled scenarios, and with the usage of an ideal storage device as well as a (non-ideal) flywheel. Simulation results confirm that all braking energy can be recuperated through the addition of energy storage to the microgrid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信