{"title":"边长为k的立方体的整数编码和格填充","authors":"U. Tamm","doi":"10.1109/ITA.2015.7308983","DOIUrl":null,"url":null,"abstract":"Integer codes correcting a single error in the maximum metric are considered. This corresponds to a packing of tori by cubes. For an asymmetric error of size one these cubes have side length 2 and the problem can be shown to be equivalent to finding zero-error codes for cycles in the sense of Shannon and Lovasz. For side length greater 3 the equivalence of single error correcting integer codes and zero-error codes does not hold any more.","PeriodicalId":150850,"journal":{"name":"2015 Information Theory and Applications Workshop (ITA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integer codes and lattice packings by cubes of sidelength k\",\"authors\":\"U. Tamm\",\"doi\":\"10.1109/ITA.2015.7308983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integer codes correcting a single error in the maximum metric are considered. This corresponds to a packing of tori by cubes. For an asymmetric error of size one these cubes have side length 2 and the problem can be shown to be equivalent to finding zero-error codes for cycles in the sense of Shannon and Lovasz. For side length greater 3 the equivalence of single error correcting integer codes and zero-error codes does not hold any more.\",\"PeriodicalId\":150850,\"journal\":{\"name\":\"2015 Information Theory and Applications Workshop (ITA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2015.7308983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2015.7308983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integer codes and lattice packings by cubes of sidelength k
Integer codes correcting a single error in the maximum metric are considered. This corresponds to a packing of tori by cubes. For an asymmetric error of size one these cubes have side length 2 and the problem can be shown to be equivalent to finding zero-error codes for cycles in the sense of Shannon and Lovasz. For side length greater 3 the equivalence of single error correcting integer codes and zero-error codes does not hold any more.