阿拉伯语自动语音识别增强

Basem H. A. Ahmed, A. S. Ghabayen
{"title":"阿拉伯语自动语音识别增强","authors":"Basem H. A. Ahmed, A. S. Ghabayen","doi":"10.1109/PICICT.2017.12","DOIUrl":null,"url":null,"abstract":"In this paper, we propose three approaches for Arabic automatic speech recognition. For pronunciation modeling, we propose a pronunciation variant generation with decision tree. For acoustic modeling, we propose the Hybrid approach to adapt the native acoustic model using another native acoustic model. Regarding the language model, we improve the language model using processed text. The experimental results show that the proposed pronunciation model approach has reduction in WER around 1%. The acoustic modeling reduce the WER by 1.2% and the adapted language modeling show reduction in WER by 1.9%.","PeriodicalId":259869,"journal":{"name":"2017 Palestinian International Conference on Information and Communication Technology (PICICT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Arabic Automatic Speech Recognition Enhancement\",\"authors\":\"Basem H. A. Ahmed, A. S. Ghabayen\",\"doi\":\"10.1109/PICICT.2017.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose three approaches for Arabic automatic speech recognition. For pronunciation modeling, we propose a pronunciation variant generation with decision tree. For acoustic modeling, we propose the Hybrid approach to adapt the native acoustic model using another native acoustic model. Regarding the language model, we improve the language model using processed text. The experimental results show that the proposed pronunciation model approach has reduction in WER around 1%. The acoustic modeling reduce the WER by 1.2% and the adapted language modeling show reduction in WER by 1.9%.\",\"PeriodicalId\":259869,\"journal\":{\"name\":\"2017 Palestinian International Conference on Information and Communication Technology (PICICT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Palestinian International Conference on Information and Communication Technology (PICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICICT.2017.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Palestinian International Conference on Information and Communication Technology (PICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICICT.2017.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了三种阿拉伯语自动语音识别方法。在语音建模方面,我们提出了一种基于决策树的语音变体生成方法。对于声学建模,我们提出了混合方法,使用另一个本地声学模型来适应本地声学模型。在语言模型方面,我们使用经过处理的文本来改进语言模型。实验结果表明,所提出的语音模型方法的WER降低了1%左右。声学模型将WER降低了1.2%,而适应语言模型显示WER降低了1.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arabic Automatic Speech Recognition Enhancement
In this paper, we propose three approaches for Arabic automatic speech recognition. For pronunciation modeling, we propose a pronunciation variant generation with decision tree. For acoustic modeling, we propose the Hybrid approach to adapt the native acoustic model using another native acoustic model. Regarding the language model, we improve the language model using processed text. The experimental results show that the proposed pronunciation model approach has reduction in WER around 1%. The acoustic modeling reduce the WER by 1.2% and the adapted language modeling show reduction in WER by 1.9%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信