基于pso优化扩展卡尔曼滤波的注入信号检测

Renjie Li, Xi Cai, Zuoyi Yao, Longwei Chen, Junhao Wang
{"title":"基于pso优化扩展卡尔曼滤波的注入信号检测","authors":"Renjie Li, Xi Cai, Zuoyi Yao, Longwei Chen, Junhao Wang","doi":"10.1109/ICECAI58670.2023.10176836","DOIUrl":null,"url":null,"abstract":"In the condition monitoring of ship cables, in order to improve the accuracy of the mixing injection method in cable current detection, this paper proposes the PSO-EKF method for state estimation. We optimize the state covariance matrix and process noise variance of the extended Kalman filter by particle swarm optimization algorithm, which solves the problem that the EKF is challenging to select the optimal covariance matrix. The experimental results show that the particle swarm optimization extended Kalman detection tracking effect has been dramatically improved compared with the traditional Kalman.","PeriodicalId":189631,"journal":{"name":"2023 4th International Conference on Electronic Communication and Artificial Intelligence (ICECAI)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Injection Signal Detection Based on PSO-Optimized Extended Kalman Filter\",\"authors\":\"Renjie Li, Xi Cai, Zuoyi Yao, Longwei Chen, Junhao Wang\",\"doi\":\"10.1109/ICECAI58670.2023.10176836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the condition monitoring of ship cables, in order to improve the accuracy of the mixing injection method in cable current detection, this paper proposes the PSO-EKF method for state estimation. We optimize the state covariance matrix and process noise variance of the extended Kalman filter by particle swarm optimization algorithm, which solves the problem that the EKF is challenging to select the optimal covariance matrix. The experimental results show that the particle swarm optimization extended Kalman detection tracking effect has been dramatically improved compared with the traditional Kalman.\",\"PeriodicalId\":189631,\"journal\":{\"name\":\"2023 4th International Conference on Electronic Communication and Artificial Intelligence (ICECAI)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference on Electronic Communication and Artificial Intelligence (ICECAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECAI58670.2023.10176836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Electronic Communication and Artificial Intelligence (ICECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAI58670.2023.10176836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在船舶电缆状态监测中,为了提高混合注入法在电缆电流检测中的准确性,本文提出了PSO-EKF方法进行状态估计。采用粒子群优化算法对扩展卡尔曼滤波器的状态协方差矩阵和过程噪声方差进行优化,解决了扩展卡尔曼滤波器难以选择最优协方差矩阵的问题。实验结果表明,粒子群优化扩展卡尔曼检测与传统卡尔曼检测相比,跟踪效果有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Injection Signal Detection Based on PSO-Optimized Extended Kalman Filter
In the condition monitoring of ship cables, in order to improve the accuracy of the mixing injection method in cable current detection, this paper proposes the PSO-EKF method for state estimation. We optimize the state covariance matrix and process noise variance of the extended Kalman filter by particle swarm optimization algorithm, which solves the problem that the EKF is challenging to select the optimal covariance matrix. The experimental results show that the particle swarm optimization extended Kalman detection tracking effect has been dramatically improved compared with the traditional Kalman.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信