Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, James Cheng
{"title":"一种基于模型的属性图聚类方法","authors":"Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, James Cheng","doi":"10.1145/2213836.2213894","DOIUrl":null,"url":null,"abstract":"Graph clustering, also known as community detection, is a long-standing problem in data mining. However, with the proliferation of rich attribute information available for objects in real-world graphs, how to leverage structural and attribute information for clustering attributed graphs becomes a new challenge. Most existing works take a distance-based approach. They proposed various distance measures to combine structural and attribute information. In this paper, we consider an alternative view and propose a model-based approach to attributed graph clustering. We develop a Bayesian probabilistic model for attributed graphs. The model provides a principled and natural framework for capturing both structural and attribute aspects of a graph, while avoiding the artificial design of a distance measure. Clustering with the proposed model can be transformed into a probabilistic inference problem, for which we devise an efficient variational algorithm. Experimental results on large real-world datasets demonstrate that our method significantly outperforms the state-of-art distance-based attributed graph clustering method.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"319","resultStr":"{\"title\":\"A model-based approach to attributed graph clustering\",\"authors\":\"Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, James Cheng\",\"doi\":\"10.1145/2213836.2213894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph clustering, also known as community detection, is a long-standing problem in data mining. However, with the proliferation of rich attribute information available for objects in real-world graphs, how to leverage structural and attribute information for clustering attributed graphs becomes a new challenge. Most existing works take a distance-based approach. They proposed various distance measures to combine structural and attribute information. In this paper, we consider an alternative view and propose a model-based approach to attributed graph clustering. We develop a Bayesian probabilistic model for attributed graphs. The model provides a principled and natural framework for capturing both structural and attribute aspects of a graph, while avoiding the artificial design of a distance measure. Clustering with the proposed model can be transformed into a probabilistic inference problem, for which we devise an efficient variational algorithm. Experimental results on large real-world datasets demonstrate that our method significantly outperforms the state-of-art distance-based attributed graph clustering method.\",\"PeriodicalId\":212616,\"journal\":{\"name\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"319\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2213836.2213894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A model-based approach to attributed graph clustering
Graph clustering, also known as community detection, is a long-standing problem in data mining. However, with the proliferation of rich attribute information available for objects in real-world graphs, how to leverage structural and attribute information for clustering attributed graphs becomes a new challenge. Most existing works take a distance-based approach. They proposed various distance measures to combine structural and attribute information. In this paper, we consider an alternative view and propose a model-based approach to attributed graph clustering. We develop a Bayesian probabilistic model for attributed graphs. The model provides a principled and natural framework for capturing both structural and attribute aspects of a graph, while avoiding the artificial design of a distance measure. Clustering with the proposed model can be transformed into a probabilistic inference problem, for which we devise an efficient variational algorithm. Experimental results on large real-world datasets demonstrate that our method significantly outperforms the state-of-art distance-based attributed graph clustering method.