基于多体动力学Lyapunov特征指数估计旋翼机地面共振稳定性

G. Cassoni, A. Zanoni, A. Tamer, P. Masarati
{"title":"基于多体动力学Lyapunov特征指数估计旋翼机地面共振稳定性","authors":"G. Cassoni, A. Zanoni, A. Tamer, P. Masarati","doi":"10.1115/detc2022-88995","DOIUrl":null,"url":null,"abstract":"\n This work discusses the use of Lyapunov Characteristic Exponents to assess the stability of nonlinear, time-dependent mechanical systems. Specific attention is dedicated to methods capable of estimating the largest exponent without requiring the Jacobian matrix of the problem, which can be applied to time histories resulting from existing multibody solvers. Helicopter ground resonance is analyzed. Improvements over the available literature are: the problem is formulated in physical coordinates, without eliminating periodicity through multiblade coordinates; the rotation of the blades is not linearized; the problem is modeled considering absolute positions and orientations of parts. The dynamic instability that arises at some angular velocities when the isotropy of the rotor is broken (e.g., caused by the failure of one lead-lag damper, a design test condition) is observed to evolve into a large amplitude limit cycle, where the usual Floquet-Lyapunov analysis of the linearized time-periodic simply predicts instability.","PeriodicalId":193710,"journal":{"name":"Volume 9: 18th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of Rotorcraft Ground Resonance by Estimating Lyapunov Characteristic Exponents From Multibody Dynamics\",\"authors\":\"G. Cassoni, A. Zanoni, A. Tamer, P. Masarati\",\"doi\":\"10.1115/detc2022-88995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work discusses the use of Lyapunov Characteristic Exponents to assess the stability of nonlinear, time-dependent mechanical systems. Specific attention is dedicated to methods capable of estimating the largest exponent without requiring the Jacobian matrix of the problem, which can be applied to time histories resulting from existing multibody solvers. Helicopter ground resonance is analyzed. Improvements over the available literature are: the problem is formulated in physical coordinates, without eliminating periodicity through multiblade coordinates; the rotation of the blades is not linearized; the problem is modeled considering absolute positions and orientations of parts. The dynamic instability that arises at some angular velocities when the isotropy of the rotor is broken (e.g., caused by the failure of one lead-lag damper, a design test condition) is observed to evolve into a large amplitude limit cycle, where the usual Floquet-Lyapunov analysis of the linearized time-periodic simply predicts instability.\",\"PeriodicalId\":193710,\"journal\":{\"name\":\"Volume 9: 18th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: 18th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2022-88995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 18th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2022-88995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作讨论了使用李雅普诺夫特征指数来评估非线性,时变机械系统的稳定性。特别关注的是能够估计最大指数的方法,而不需要问题的雅可比矩阵,这可以应用于由现有多体解算器产生的时间历史。对直升机地面共振进行了分析。对现有文献的改进是:问题是在物理坐标中表述的,没有通过多叶片坐标消除周期性;叶片的旋转不是线性化的;该问题的建模考虑了零件的绝对位置和绝对方向。当转子的各向同性被破坏时,在某些角速度下产生的动态不稳定性(例如,由一个超前-滞后阻尼器的失效引起,设计测试条件)被观察到演变成一个大振幅极限环,其中通常的线性化时间周期的Floquet-Lyapunov分析只是预测不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of Rotorcraft Ground Resonance by Estimating Lyapunov Characteristic Exponents From Multibody Dynamics
This work discusses the use of Lyapunov Characteristic Exponents to assess the stability of nonlinear, time-dependent mechanical systems. Specific attention is dedicated to methods capable of estimating the largest exponent without requiring the Jacobian matrix of the problem, which can be applied to time histories resulting from existing multibody solvers. Helicopter ground resonance is analyzed. Improvements over the available literature are: the problem is formulated in physical coordinates, without eliminating periodicity through multiblade coordinates; the rotation of the blades is not linearized; the problem is modeled considering absolute positions and orientations of parts. The dynamic instability that arises at some angular velocities when the isotropy of the rotor is broken (e.g., caused by the failure of one lead-lag damper, a design test condition) is observed to evolve into a large amplitude limit cycle, where the usual Floquet-Lyapunov analysis of the linearized time-periodic simply predicts instability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信